Gigahertz measurement-device-independent quantum key distribution using directly modulated lasers

Abstract Measurement-device-independent quantum key distribution (MDI-QKD) is a technique for quantum-secured communication that eliminates all detector side-channels, although is currently limited by implementation complexity and low secure key rates. Here, we introduce a simple and compact MDI-QKD...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: R. I. Woodward, Y. S. Lo, M. Pittaluga, M. Minder, T. K. Paraïso, M. Lucamarini, Z. L. Yuan, A. J. Shields
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/59782089c6b64576ac6d285f33b5bb16
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:59782089c6b64576ac6d285f33b5bb16
record_format dspace
spelling oai:doaj.org-article:59782089c6b64576ac6d285f33b5bb162021-12-02T14:37:40ZGigahertz measurement-device-independent quantum key distribution using directly modulated lasers10.1038/s41534-021-00394-22056-6387https://doaj.org/article/59782089c6b64576ac6d285f33b5bb162021-04-01T00:00:00Zhttps://doi.org/10.1038/s41534-021-00394-2https://doaj.org/toc/2056-6387Abstract Measurement-device-independent quantum key distribution (MDI-QKD) is a technique for quantum-secured communication that eliminates all detector side-channels, although is currently limited by implementation complexity and low secure key rates. Here, we introduce a simple and compact MDI-QKD system design at gigahertz clock rates with enhanced resilience to laser fluctuations—thus enabling free-running semiconductor laser sources to be employed without spectral or phase feedback. This is achieved using direct laser modulation, carefully exploiting gain-switching and injection-locking laser dynamics to encode phase-modulated time-bin bits. Our design enables secure key rates that improve upon the state of the art by an order of magnitude, up to 8 bps at 54 dB channel loss and 2 kbps in the finite-size regime for 30 dB channel loss. This greatly simplified MDI-QKD system design and proof-of-principle demonstration shows that MDI-QKD is a practical, high-performance solution for future quantum communication networks.R. I. WoodwardY. S. LoM. PittalugaM. MinderT. K. ParaïsoM. LucamariniZ. L. YuanA. J. ShieldsNature PortfolioarticlePhysicsQC1-999Electronic computers. Computer scienceQA75.5-76.95ENnpj Quantum Information, Vol 7, Iss 1, Pp 1-6 (2021)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
Electronic computers. Computer science
QA75.5-76.95
spellingShingle Physics
QC1-999
Electronic computers. Computer science
QA75.5-76.95
R. I. Woodward
Y. S. Lo
M. Pittaluga
M. Minder
T. K. Paraïso
M. Lucamarini
Z. L. Yuan
A. J. Shields
Gigahertz measurement-device-independent quantum key distribution using directly modulated lasers
description Abstract Measurement-device-independent quantum key distribution (MDI-QKD) is a technique for quantum-secured communication that eliminates all detector side-channels, although is currently limited by implementation complexity and low secure key rates. Here, we introduce a simple and compact MDI-QKD system design at gigahertz clock rates with enhanced resilience to laser fluctuations—thus enabling free-running semiconductor laser sources to be employed without spectral or phase feedback. This is achieved using direct laser modulation, carefully exploiting gain-switching and injection-locking laser dynamics to encode phase-modulated time-bin bits. Our design enables secure key rates that improve upon the state of the art by an order of magnitude, up to 8 bps at 54 dB channel loss and 2 kbps in the finite-size regime for 30 dB channel loss. This greatly simplified MDI-QKD system design and proof-of-principle demonstration shows that MDI-QKD is a practical, high-performance solution for future quantum communication networks.
format article
author R. I. Woodward
Y. S. Lo
M. Pittaluga
M. Minder
T. K. Paraïso
M. Lucamarini
Z. L. Yuan
A. J. Shields
author_facet R. I. Woodward
Y. S. Lo
M. Pittaluga
M. Minder
T. K. Paraïso
M. Lucamarini
Z. L. Yuan
A. J. Shields
author_sort R. I. Woodward
title Gigahertz measurement-device-independent quantum key distribution using directly modulated lasers
title_short Gigahertz measurement-device-independent quantum key distribution using directly modulated lasers
title_full Gigahertz measurement-device-independent quantum key distribution using directly modulated lasers
title_fullStr Gigahertz measurement-device-independent quantum key distribution using directly modulated lasers
title_full_unstemmed Gigahertz measurement-device-independent quantum key distribution using directly modulated lasers
title_sort gigahertz measurement-device-independent quantum key distribution using directly modulated lasers
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/59782089c6b64576ac6d285f33b5bb16
work_keys_str_mv AT riwoodward gigahertzmeasurementdeviceindependentquantumkeydistributionusingdirectlymodulatedlasers
AT yslo gigahertzmeasurementdeviceindependentquantumkeydistributionusingdirectlymodulatedlasers
AT mpittaluga gigahertzmeasurementdeviceindependentquantumkeydistributionusingdirectlymodulatedlasers
AT mminder gigahertzmeasurementdeviceindependentquantumkeydistributionusingdirectlymodulatedlasers
AT tkparaiso gigahertzmeasurementdeviceindependentquantumkeydistributionusingdirectlymodulatedlasers
AT mlucamarini gigahertzmeasurementdeviceindependentquantumkeydistributionusingdirectlymodulatedlasers
AT zlyuan gigahertzmeasurementdeviceindependentquantumkeydistributionusingdirectlymodulatedlasers
AT ajshields gigahertzmeasurementdeviceindependentquantumkeydistributionusingdirectlymodulatedlasers
_version_ 1718390951745945600