Time Series Resolution of the Fish Necrobiome Reveals a Decomposer Succession Involving Toxigenic Bacterial Pathogens
ABSTRACT Despite progress understanding microbial communities involved in terrestrial vertebrate decomposition, little is known about the microbial decomposition of aquatic vertebrates from a functional and environmental context. Here, we analyzed temporal changes in the “necrobiome” of rainbow dart...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/59795a052e7249a3806cc1026d7d2586 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:59795a052e7249a3806cc1026d7d2586 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:59795a052e7249a3806cc1026d7d25862021-12-02T19:46:20ZTime Series Resolution of the Fish Necrobiome Reveals a Decomposer Succession Involving Toxigenic Bacterial Pathogens10.1128/mSystems.00145-202379-5077https://doaj.org/article/59795a052e7249a3806cc1026d7d25862020-04-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSystems.00145-20https://doaj.org/toc/2379-5077ABSTRACT Despite progress understanding microbial communities involved in terrestrial vertebrate decomposition, little is known about the microbial decomposition of aquatic vertebrates from a functional and environmental context. Here, we analyzed temporal changes in the “necrobiome” of rainbow darters, which are common North American fish that are sensitive indicators of water quality. By combining 16S rRNA gene and shotgun metagenomic sequence data from four time points, we studied the progression of decomposers from both taxonomic and functional perspectives. The 16S rRNA gene profiles revealed strong community succession, with early decomposition stages associated with Aeromonas and Clostridium taxa and later stages dominated by members of the Rikenellaceae (i.e., Alistipes/Acetobacteroides genera). These results were reproducible and independent of environmental perturbation, given that exposure to wastewater treatment plant effluent did not substantially influence the necrobiome composition of fish or the associated water sample microbiota. Metagenomic analysis revealed significant changes throughout decomposition in degradation pathways for amino acids, carbohydrates/glycans, and other compounds, in addition to putrefaction pathways for production of putrescine, cadaverine, and indole. Binning of contigs confirmed a predominance of Aeromonas genome assemblies, including those from novel strains related to the pathogen Aeromonas veronii. These bins of Aeromonas genes also encoded known hemolysin toxins (e.g., aerolysin) that were particularly abundant early in the process, potentially contributing to host cell lysis during decomposition. Overall, our results demonstrate that wild-caught fish have a reproducible decomposer succession and that the fish necrobiome serves as a potential source of putative pathogens and toxigenic bacteria. IMPORTANCE The microbial decomposition of animal tissues is an important ecological process that impacts nutrient cycling in natural environments. We studied the microbial decomposition of a common North American fish (rainbow darters) over four time points, combining 16S rRNA gene and shotgun metagenomic sequence data to obtain both taxonomic and functional perspectives. Our data revealed a strong community succession that was reproduced across different fish and environments. Decomposition time point was the main driver of community composition and functional potential; fish environmental origin (upstream or downstream of a wastewater treatment plant) had a secondary effect. We also identified strains related to the putative pathogen Aeromonas veronii as dominant members of the decomposition community. These bacteria peaked early in decomposition and coincided with the metagenomic abundance of hemolytic toxin genes. Our work reveals a strong decomposer succession in wild-caught fish, providing functional and taxonomic insights into the vertebrate necrobiome.Briallen LobbRhiannon HodgsonMichael D. J. LynchMichael J. MansfieldJiujun ChengTrevor C. CharlesJosh D. NeufeldPaul M. CraigAndrew C. DoxeyAmerican Society for Microbiologyarticlenecrobiomemicrobiomedecompositionwastewaterrainbow darterAeromonasMicrobiologyQR1-502ENmSystems, Vol 5, Iss 2 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
necrobiome microbiome decomposition wastewater rainbow darter Aeromonas Microbiology QR1-502 |
spellingShingle |
necrobiome microbiome decomposition wastewater rainbow darter Aeromonas Microbiology QR1-502 Briallen Lobb Rhiannon Hodgson Michael D. J. Lynch Michael J. Mansfield Jiujun Cheng Trevor C. Charles Josh D. Neufeld Paul M. Craig Andrew C. Doxey Time Series Resolution of the Fish Necrobiome Reveals a Decomposer Succession Involving Toxigenic Bacterial Pathogens |
description |
ABSTRACT Despite progress understanding microbial communities involved in terrestrial vertebrate decomposition, little is known about the microbial decomposition of aquatic vertebrates from a functional and environmental context. Here, we analyzed temporal changes in the “necrobiome” of rainbow darters, which are common North American fish that are sensitive indicators of water quality. By combining 16S rRNA gene and shotgun metagenomic sequence data from four time points, we studied the progression of decomposers from both taxonomic and functional perspectives. The 16S rRNA gene profiles revealed strong community succession, with early decomposition stages associated with Aeromonas and Clostridium taxa and later stages dominated by members of the Rikenellaceae (i.e., Alistipes/Acetobacteroides genera). These results were reproducible and independent of environmental perturbation, given that exposure to wastewater treatment plant effluent did not substantially influence the necrobiome composition of fish or the associated water sample microbiota. Metagenomic analysis revealed significant changes throughout decomposition in degradation pathways for amino acids, carbohydrates/glycans, and other compounds, in addition to putrefaction pathways for production of putrescine, cadaverine, and indole. Binning of contigs confirmed a predominance of Aeromonas genome assemblies, including those from novel strains related to the pathogen Aeromonas veronii. These bins of Aeromonas genes also encoded known hemolysin toxins (e.g., aerolysin) that were particularly abundant early in the process, potentially contributing to host cell lysis during decomposition. Overall, our results demonstrate that wild-caught fish have a reproducible decomposer succession and that the fish necrobiome serves as a potential source of putative pathogens and toxigenic bacteria. IMPORTANCE The microbial decomposition of animal tissues is an important ecological process that impacts nutrient cycling in natural environments. We studied the microbial decomposition of a common North American fish (rainbow darters) over four time points, combining 16S rRNA gene and shotgun metagenomic sequence data to obtain both taxonomic and functional perspectives. Our data revealed a strong community succession that was reproduced across different fish and environments. Decomposition time point was the main driver of community composition and functional potential; fish environmental origin (upstream or downstream of a wastewater treatment plant) had a secondary effect. We also identified strains related to the putative pathogen Aeromonas veronii as dominant members of the decomposition community. These bacteria peaked early in decomposition and coincided with the metagenomic abundance of hemolytic toxin genes. Our work reveals a strong decomposer succession in wild-caught fish, providing functional and taxonomic insights into the vertebrate necrobiome. |
format |
article |
author |
Briallen Lobb Rhiannon Hodgson Michael D. J. Lynch Michael J. Mansfield Jiujun Cheng Trevor C. Charles Josh D. Neufeld Paul M. Craig Andrew C. Doxey |
author_facet |
Briallen Lobb Rhiannon Hodgson Michael D. J. Lynch Michael J. Mansfield Jiujun Cheng Trevor C. Charles Josh D. Neufeld Paul M. Craig Andrew C. Doxey |
author_sort |
Briallen Lobb |
title |
Time Series Resolution of the Fish Necrobiome Reveals a Decomposer Succession Involving Toxigenic Bacterial Pathogens |
title_short |
Time Series Resolution of the Fish Necrobiome Reveals a Decomposer Succession Involving Toxigenic Bacterial Pathogens |
title_full |
Time Series Resolution of the Fish Necrobiome Reveals a Decomposer Succession Involving Toxigenic Bacterial Pathogens |
title_fullStr |
Time Series Resolution of the Fish Necrobiome Reveals a Decomposer Succession Involving Toxigenic Bacterial Pathogens |
title_full_unstemmed |
Time Series Resolution of the Fish Necrobiome Reveals a Decomposer Succession Involving Toxigenic Bacterial Pathogens |
title_sort |
time series resolution of the fish necrobiome reveals a decomposer succession involving toxigenic bacterial pathogens |
publisher |
American Society for Microbiology |
publishDate |
2020 |
url |
https://doaj.org/article/59795a052e7249a3806cc1026d7d2586 |
work_keys_str_mv |
AT briallenlobb timeseriesresolutionofthefishnecrobiomerevealsadecomposersuccessioninvolvingtoxigenicbacterialpathogens AT rhiannonhodgson timeseriesresolutionofthefishnecrobiomerevealsadecomposersuccessioninvolvingtoxigenicbacterialpathogens AT michaeldjlynch timeseriesresolutionofthefishnecrobiomerevealsadecomposersuccessioninvolvingtoxigenicbacterialpathogens AT michaeljmansfield timeseriesresolutionofthefishnecrobiomerevealsadecomposersuccessioninvolvingtoxigenicbacterialpathogens AT jiujuncheng timeseriesresolutionofthefishnecrobiomerevealsadecomposersuccessioninvolvingtoxigenicbacterialpathogens AT trevorccharles timeseriesresolutionofthefishnecrobiomerevealsadecomposersuccessioninvolvingtoxigenicbacterialpathogens AT joshdneufeld timeseriesresolutionofthefishnecrobiomerevealsadecomposersuccessioninvolvingtoxigenicbacterialpathogens AT paulmcraig timeseriesresolutionofthefishnecrobiomerevealsadecomposersuccessioninvolvingtoxigenicbacterialpathogens AT andrewcdoxey timeseriesresolutionofthefishnecrobiomerevealsadecomposersuccessioninvolvingtoxigenicbacterialpathogens |
_version_ |
1718375962813399040 |