In vitro Assessment of Chemical and Pre-biotic Properties of Carboxymethylated Polysaccharides From Passiflora edulis Peel, Xylan, and Citrus Pectin

This study aimed to determine the carboxymethylation effect of crude water-soluble polysaccharides of Passiflora edulis peel (WPEP), xylan (XY), and citrus pectin (CP). Their chemical and pre-biotic properties were also determined. The polysaccharides were carboxymethylated by reacting with chloroac...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yongjin Sun, Yuan Guan, Hock Eng Khoo, Xia Li
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/597d4bce7e0a49cda2fb1fa215105f39
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:597d4bce7e0a49cda2fb1fa215105f39
record_format dspace
spelling oai:doaj.org-article:597d4bce7e0a49cda2fb1fa215105f392021-12-03T07:20:23ZIn vitro Assessment of Chemical and Pre-biotic Properties of Carboxymethylated Polysaccharides From Passiflora edulis Peel, Xylan, and Citrus Pectin2296-861X10.3389/fnut.2021.778563https://doaj.org/article/597d4bce7e0a49cda2fb1fa215105f392021-12-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fnut.2021.778563/fullhttps://doaj.org/toc/2296-861XThis study aimed to determine the carboxymethylation effect of crude water-soluble polysaccharides of Passiflora edulis peel (WPEP), xylan (XY), and citrus pectin (CP). Their chemical and pre-biotic properties were also determined. The polysaccharides were carboxymethylated by reacting with chloroacetic acid and sodium hydroxide. The carboxymethylated and non-carboxymethylated polysaccharides were also used as pre-biotics to study the growth pattern of selected intestinal microflora. These polysaccharides substituted the glucose solution in culture media for culturing Lactobacillus brevis GIM1.773, Lactobacillus plantarum GIM1.19, Lactobacillus delbrueckii subsp. bulgaricus GIM1.155, and Streptococcus thermophilus GIM1.540. The results showed that the carboxymethylated polysaccharides c-XY, c-CP, and c-WPEP, had substitution degrees of 0.682, 0.437, and 0.439, respectively. The polysaccharides demonstrated resistance to digestion in the simulated human digestive models. The resistance to digestion was enhanced by carboxymethylation, especially the carboxymethylated CP and WPEP. The results also showed that the pre-biotic activities of the polysaccharides increased after carboxymethylation. The c-XY had a better pre-biotic effect than XY and the other carbohydrate samples. The findings suggested that carboxymethylated polysaccharides may be developed into novel pre-biotics and nutraceuticals that could promote growth of the probiotic strains.Yongjin SunYuan GuanYuan GuanHock Eng KhooXia LiXia LiFrontiers Media S.A.articlechemical modificationgrowth curvepassion fruitprobioticfunctional groupNutrition. Foods and food supplyTX341-641ENFrontiers in Nutrition, Vol 8 (2021)
institution DOAJ
collection DOAJ
language EN
topic chemical modification
growth curve
passion fruit
probiotic
functional group
Nutrition. Foods and food supply
TX341-641
spellingShingle chemical modification
growth curve
passion fruit
probiotic
functional group
Nutrition. Foods and food supply
TX341-641
Yongjin Sun
Yuan Guan
Yuan Guan
Hock Eng Khoo
Xia Li
Xia Li
In vitro Assessment of Chemical and Pre-biotic Properties of Carboxymethylated Polysaccharides From Passiflora edulis Peel, Xylan, and Citrus Pectin
description This study aimed to determine the carboxymethylation effect of crude water-soluble polysaccharides of Passiflora edulis peel (WPEP), xylan (XY), and citrus pectin (CP). Their chemical and pre-biotic properties were also determined. The polysaccharides were carboxymethylated by reacting with chloroacetic acid and sodium hydroxide. The carboxymethylated and non-carboxymethylated polysaccharides were also used as pre-biotics to study the growth pattern of selected intestinal microflora. These polysaccharides substituted the glucose solution in culture media for culturing Lactobacillus brevis GIM1.773, Lactobacillus plantarum GIM1.19, Lactobacillus delbrueckii subsp. bulgaricus GIM1.155, and Streptococcus thermophilus GIM1.540. The results showed that the carboxymethylated polysaccharides c-XY, c-CP, and c-WPEP, had substitution degrees of 0.682, 0.437, and 0.439, respectively. The polysaccharides demonstrated resistance to digestion in the simulated human digestive models. The resistance to digestion was enhanced by carboxymethylation, especially the carboxymethylated CP and WPEP. The results also showed that the pre-biotic activities of the polysaccharides increased after carboxymethylation. The c-XY had a better pre-biotic effect than XY and the other carbohydrate samples. The findings suggested that carboxymethylated polysaccharides may be developed into novel pre-biotics and nutraceuticals that could promote growth of the probiotic strains.
format article
author Yongjin Sun
Yuan Guan
Yuan Guan
Hock Eng Khoo
Xia Li
Xia Li
author_facet Yongjin Sun
Yuan Guan
Yuan Guan
Hock Eng Khoo
Xia Li
Xia Li
author_sort Yongjin Sun
title In vitro Assessment of Chemical and Pre-biotic Properties of Carboxymethylated Polysaccharides From Passiflora edulis Peel, Xylan, and Citrus Pectin
title_short In vitro Assessment of Chemical and Pre-biotic Properties of Carboxymethylated Polysaccharides From Passiflora edulis Peel, Xylan, and Citrus Pectin
title_full In vitro Assessment of Chemical and Pre-biotic Properties of Carboxymethylated Polysaccharides From Passiflora edulis Peel, Xylan, and Citrus Pectin
title_fullStr In vitro Assessment of Chemical and Pre-biotic Properties of Carboxymethylated Polysaccharides From Passiflora edulis Peel, Xylan, and Citrus Pectin
title_full_unstemmed In vitro Assessment of Chemical and Pre-biotic Properties of Carboxymethylated Polysaccharides From Passiflora edulis Peel, Xylan, and Citrus Pectin
title_sort in vitro assessment of chemical and pre-biotic properties of carboxymethylated polysaccharides from passiflora edulis peel, xylan, and citrus pectin
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/597d4bce7e0a49cda2fb1fa215105f39
work_keys_str_mv AT yongjinsun invitroassessmentofchemicalandprebioticpropertiesofcarboxymethylatedpolysaccharidesfrompassifloraedulispeelxylanandcitruspectin
AT yuanguan invitroassessmentofchemicalandprebioticpropertiesofcarboxymethylatedpolysaccharidesfrompassifloraedulispeelxylanandcitruspectin
AT yuanguan invitroassessmentofchemicalandprebioticpropertiesofcarboxymethylatedpolysaccharidesfrompassifloraedulispeelxylanandcitruspectin
AT hockengkhoo invitroassessmentofchemicalandprebioticpropertiesofcarboxymethylatedpolysaccharidesfrompassifloraedulispeelxylanandcitruspectin
AT xiali invitroassessmentofchemicalandprebioticpropertiesofcarboxymethylatedpolysaccharidesfrompassifloraedulispeelxylanandcitruspectin
AT xiali invitroassessmentofchemicalandprebioticpropertiesofcarboxymethylatedpolysaccharidesfrompassifloraedulispeelxylanandcitruspectin
_version_ 1718373812480770048