Comparison of radiomic feature aggregation methods for patients with multiple tumors
Abstract Radiomic feature analysis has been shown to be effective at analyzing diagnostic images to model cancer outcomes. It has not yet been established how to best combine radiomic features in cancer patients with multifocal tumors. As the number of patients with multifocal metastatic cancer cont...
Guardado en:
Autores principales: | Enoch Chang, Marina Z. Joel, Hannah Y. Chang, Justin Du, Omaditya Khanna, Antonio Omuro, Veronica Chiang, Sanjay Aneja |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/59853435739a456ba6fef22045cf3adb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Radiomics feature robustness as measured using an MRI phantom
por: Joonsang Lee, et al.
Publicado: (2021) -
Intensity harmonization techniques influence radiomics features and radiomics-based predictions in sarcoma patients
por: Amandine Crombé, et al.
Publicado: (2020) -
Computed tomography radiomic features hold prognostic utility for canine lung tumors: An analytical study.
por: Hannah Able, et al.
Publicado: (2021) -
Reproducibility and Repeatability of CBCT-Derived Radiomics Features
por: Hao Wang, et al.
Publicado: (2021) -
Quantitative Susceptibility Mapping-Derived Radiomic Features in Discriminating Multiple Sclerosis From Neuromyelitis Optica Spectrum Disorder
por: Zichun Yan, et al.
Publicado: (2021)