Vibration analysis of fluid-structure interaction using tuned mass dampers
This paper has investigated the semi-analytical analysis of the solid-fluid interaction vibration in the presence of concentrated mass-spring-damper vibration absorber. The nonlinear partial differential equations of motion are derived by considering von Karman-type large deformations and viscoelast...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Institut za istrazivanja i projektovanja u privredi
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5985e4b8a154465383d9553b8eeab2c6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5985e4b8a154465383d9553b8eeab2c6 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5985e4b8a154465383d9553b8eeab2c62021-12-05T21:23:07ZVibration analysis of fluid-structure interaction using tuned mass dampers1451-41171821-319710.5937/jaes0-26043https://doaj.org/article/5985e4b8a154465383d9553b8eeab2c62021-01-01T00:00:00Zhttps://scindeks-clanci.ceon.rs/data/pdf/1451-4117/2021/1451-41172102318J.pdfhttps://doaj.org/toc/1451-4117https://doaj.org/toc/1821-3197This paper has investigated the semi-analytical analysis of the solid-fluid interaction vibration in the presence of concentrated mass-spring-damper vibration absorber. The nonlinear partial differential equations of motion are derived by considering von Karman-type large deformations and viscoelastic behaviour. Fluid-structure interaction is modelled by using an acceleration coupling model in which a nonlinear Van der Pol oscillator simulates fluctuating nature of the vortex street. The nonlinear equations are discretized via the Galerkin approach, and the obtained equations are numerically solved by applying the Runge-Kutta method. Eventually, the dynamic response, phase plane plots, and variations of maximum amplitude in terms of fluid velocity for different parameters are extracted. The results reveal that utilizing vibration absorber leads to a significant effect on the dynamic characteristics of the system, displaces the lock-in phenomenon, and remarkably reduce the amplitude of the system oscillations.Javanshir IlgharZarepour GholamrezaInstitut za istrazivanja i projektovanja u privrediarticlenonlinear vibrationsolid-fluid interactionvibration absorbertuned mass damperssemi-analytical methodTechnologyTEngineering (General). Civil engineering (General)TA1-2040ENIstrazivanja i projektovanja za privredu, Vol 19, Iss 2, Pp 318-326 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
nonlinear vibration solid-fluid interaction vibration absorber tuned mass dampers semi-analytical method Technology T Engineering (General). Civil engineering (General) TA1-2040 |
spellingShingle |
nonlinear vibration solid-fluid interaction vibration absorber tuned mass dampers semi-analytical method Technology T Engineering (General). Civil engineering (General) TA1-2040 Javanshir Ilghar Zarepour Gholamreza Vibration analysis of fluid-structure interaction using tuned mass dampers |
description |
This paper has investigated the semi-analytical analysis of the solid-fluid interaction vibration in the presence of concentrated mass-spring-damper vibration absorber. The nonlinear partial differential equations of motion are derived by considering von Karman-type large deformations and viscoelastic behaviour. Fluid-structure interaction is modelled by using an acceleration coupling model in which a nonlinear Van der Pol oscillator simulates fluctuating nature of the vortex street. The nonlinear equations are discretized via the Galerkin approach, and the obtained equations are numerically solved by applying the Runge-Kutta method. Eventually, the dynamic response, phase plane plots, and variations of maximum amplitude in terms of fluid velocity for different parameters are extracted. The results reveal that utilizing vibration absorber leads to a significant effect on the dynamic characteristics of the system, displaces the lock-in phenomenon, and remarkably reduce the amplitude of the system oscillations. |
format |
article |
author |
Javanshir Ilghar Zarepour Gholamreza |
author_facet |
Javanshir Ilghar Zarepour Gholamreza |
author_sort |
Javanshir Ilghar |
title |
Vibration analysis of fluid-structure interaction using tuned mass dampers |
title_short |
Vibration analysis of fluid-structure interaction using tuned mass dampers |
title_full |
Vibration analysis of fluid-structure interaction using tuned mass dampers |
title_fullStr |
Vibration analysis of fluid-structure interaction using tuned mass dampers |
title_full_unstemmed |
Vibration analysis of fluid-structure interaction using tuned mass dampers |
title_sort |
vibration analysis of fluid-structure interaction using tuned mass dampers |
publisher |
Institut za istrazivanja i projektovanja u privredi |
publishDate |
2021 |
url |
https://doaj.org/article/5985e4b8a154465383d9553b8eeab2c6 |
work_keys_str_mv |
AT javanshirilghar vibrationanalysisoffluidstructureinteractionusingtunedmassdampers AT zarepourgholamreza vibrationanalysisoffluidstructureinteractionusingtunedmassdampers |
_version_ |
1718371002495270912 |