Differentiation of recurrent glioblastoma from radiation necrosis using diffusion radiomics with machine learning model development and external validation

Abstract The purpose of this study was to establish a high-performing radiomics strategy with machine learning from conventional and diffusion MRI to differentiate recurrent glioblastoma (GBM) from radiation necrosis (RN) after concurrent chemoradiotherapy (CCRT) or radiotherapy. Eighty-six patients...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yae Won Park, Dongmin Choi, Ji Eun Park, Sung Soo Ahn, Hwiyoung Kim, Jong Hee Chang, Se Hoon Kim, Ho Sung Kim, Seung-Koo Lee
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/598a029341804dad921fdd8916fdd626
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares