An Empirical Study of Training Data Selection Methods for Ranking-Oriented Cross-Project Defect Prediction
Ranking-oriented cross-project defect prediction (ROCPDP), which ranks software modules of a new target industrial project based on the predicted defect number or density, has been suggested in the literature. A major concern of ROCPDP is the distribution difference between the source project (aka....
Guardado en:
Autores principales: | Haoyu Luo, Heng Dai, Weiqiang Peng, Wenhua Hu, Fuyang Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/59a58f66c75b4c9ba2125e2709250132 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Software Fault Localization through Aggregation-Based Neural Ranking for Static and Dynamic Features Selection
por: Abdulaziz Alhumam
Publicado: (2021) -
Rotating Machinery Diagnosing in Non-Stationary Conditions with Empirical Mode Decomposition-Based Wavelet Leaders Multifractal Spectra
por: Iwona Komorska, et al.
Publicado: (2021) -
Machine Learning Based Bearing Fault Diagnosis Using the Case Western Reserve University Data: A Review
por: Xiao Zhang, et al.
Publicado: (2021) -
Low-Computational-Cost Hybrid FEM-Analytical Induction Machine Model for the Diagnosis of Rotor Eccentricity, Based on Sparse Identification Techniques and Trigonometric Interpolation
por: Carla Terron-Santiago, et al.
Publicado: (2021) -
Residual current grounding fault intelligent sensing technology based on wavelet packet decomposition
por: Bingyu LI, et al.
Publicado: (2021)