Mechanical characterization and cleaning of CVD single-layer h-BN resonators
Nanofabrication: optimized transfer enables hexagonal boron nitride mechanical resonators An improved transfer method allows easy placement of highly transparent and strongly adhesive hexagonal boron nitride on target substrates. A team led by Santiago J. Cartamil-Bueno at Delft University of Techno...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/59a75a5546394a3ea6d97b34ac32799e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:59a75a5546394a3ea6d97b34ac32799e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:59a75a5546394a3ea6d97b34ac32799e2021-12-02T14:18:34ZMechanical characterization and cleaning of CVD single-layer h-BN resonators10.1038/s41699-017-0020-82397-7132https://doaj.org/article/59a75a5546394a3ea6d97b34ac32799e2017-06-01T00:00:00Zhttps://doi.org/10.1038/s41699-017-0020-8https://doaj.org/toc/2397-7132Nanofabrication: optimized transfer enables hexagonal boron nitride mechanical resonators An improved transfer method allows easy placement of highly transparent and strongly adhesive hexagonal boron nitride on target substrates. A team led by Santiago J. Cartamil-Bueno at Delft University of Technology developed a technique that enables the transfer of large-area, single-layer hexagonal boron nitride films grown by chemical vapor deposition onto a substrate of choice, whilst not requiring optical visualization. Following an additional cleaning step, the atomically thin membranes were transferred onto circular microcavities patterned on a silicon oxide substrate, resulting in the formation of suspended drums. Cleaning in harsh environments using a mixture of air and ozone is instrumental to a substantial improvement in the quality factor of the drums, indicating that undesired contamination causes damping of the mechanical motion. These results show promise for the development of sensitive hexagonal boron nitride resonators.Santiago J. Cartamil-BuenoMatteo CavalieriRuizhi WangSamer HouriStephan HofmannHerre S. J. van der ZantNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492ChemistryQD1-999ENnpj 2D Materials and Applications, Vol 1, Iss 1, Pp 1-7 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Materials of engineering and construction. Mechanics of materials TA401-492 Chemistry QD1-999 |
spellingShingle |
Materials of engineering and construction. Mechanics of materials TA401-492 Chemistry QD1-999 Santiago J. Cartamil-Bueno Matteo Cavalieri Ruizhi Wang Samer Houri Stephan Hofmann Herre S. J. van der Zant Mechanical characterization and cleaning of CVD single-layer h-BN resonators |
description |
Nanofabrication: optimized transfer enables hexagonal boron nitride mechanical resonators An improved transfer method allows easy placement of highly transparent and strongly adhesive hexagonal boron nitride on target substrates. A team led by Santiago J. Cartamil-Bueno at Delft University of Technology developed a technique that enables the transfer of large-area, single-layer hexagonal boron nitride films grown by chemical vapor deposition onto a substrate of choice, whilst not requiring optical visualization. Following an additional cleaning step, the atomically thin membranes were transferred onto circular microcavities patterned on a silicon oxide substrate, resulting in the formation of suspended drums. Cleaning in harsh environments using a mixture of air and ozone is instrumental to a substantial improvement in the quality factor of the drums, indicating that undesired contamination causes damping of the mechanical motion. These results show promise for the development of sensitive hexagonal boron nitride resonators. |
format |
article |
author |
Santiago J. Cartamil-Bueno Matteo Cavalieri Ruizhi Wang Samer Houri Stephan Hofmann Herre S. J. van der Zant |
author_facet |
Santiago J. Cartamil-Bueno Matteo Cavalieri Ruizhi Wang Samer Houri Stephan Hofmann Herre S. J. van der Zant |
author_sort |
Santiago J. Cartamil-Bueno |
title |
Mechanical characterization and cleaning of CVD single-layer h-BN resonators |
title_short |
Mechanical characterization and cleaning of CVD single-layer h-BN resonators |
title_full |
Mechanical characterization and cleaning of CVD single-layer h-BN resonators |
title_fullStr |
Mechanical characterization and cleaning of CVD single-layer h-BN resonators |
title_full_unstemmed |
Mechanical characterization and cleaning of CVD single-layer h-BN resonators |
title_sort |
mechanical characterization and cleaning of cvd single-layer h-bn resonators |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/59a75a5546394a3ea6d97b34ac32799e |
work_keys_str_mv |
AT santiagojcartamilbueno mechanicalcharacterizationandcleaningofcvdsinglelayerhbnresonators AT matteocavalieri mechanicalcharacterizationandcleaningofcvdsinglelayerhbnresonators AT ruizhiwang mechanicalcharacterizationandcleaningofcvdsinglelayerhbnresonators AT samerhouri mechanicalcharacterizationandcleaningofcvdsinglelayerhbnresonators AT stephanhofmann mechanicalcharacterizationandcleaningofcvdsinglelayerhbnresonators AT herresjvanderzant mechanicalcharacterizationandcleaningofcvdsinglelayerhbnresonators |
_version_ |
1718391607551590400 |