New Sufficient Conditions to Ulam Stabilities for a Class of Higher Order Integro-Differential Equations

In this work, we present sufficient conditions in order to establish different types of Ulam stabilities for a class of higher order integro-differential equations. In particular, we consider a new kind of stability, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML&q...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alberto M. Simões, Fernando Carapau, Paulo Correia
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/59b1e2a218684a80ac322c1f1702be26
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this work, we present sufficient conditions in order to establish different types of Ulam stabilities for a class of higher order integro-differential equations. In particular, we consider a new kind of stability, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>-semi-Hyers-Ulam stability, which is in some sense between the Hyers–Ulam and the Hyers–Ulam–Rassias stabilities. These new sufficient conditions result from the application of the Banach Fixed Point Theorem, and by applying a specific generalization of the Bielecki metric.