An Estimator for Torque and Draft Force Requirements of a New Up-cut Rotary Tiller
The aim of this study is to design, fabricate and evaluate a new type of up-cut rotary tiller and to develop correct formulas to estimate its torque and draft force using the laws of classical mechanics. In order to verify the model, a real-sized prototype of the rotary tiller was tested. It was hyp...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN FA |
Publicado: |
Ferdowsi University of Mashhad
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/59b913a6f6fe4c1690a80baf6c500584 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:59b913a6f6fe4c1690a80baf6c500584 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:59b913a6f6fe4c1690a80baf6c5005842021-11-14T06:35:16ZAn Estimator for Torque and Draft Force Requirements of a New Up-cut Rotary Tiller2228-68292423-394310.22067/jam.v10i1.71744https://doaj.org/article/59b913a6f6fe4c1690a80baf6c5005842020-03-01T00:00:00Zhttps://jame.um.ac.ir/article_33983_8ec99d575e849d6d47ba6bf41783cb29.pdfhttps://doaj.org/toc/2228-6829https://doaj.org/toc/2423-3943The aim of this study is to design, fabricate and evaluate a new type of up-cut rotary tiller and to develop correct formulas to estimate its torque and draft force using the laws of classical mechanics. In order to verify the model, a real-sized prototype of the rotary tiller was tested. It was hypothesized that four processes are involved to create the rotary tiller torque, namely soil cutting, soil lifting, soil-metal friction, and soil velocity. Furthermore, it was assumed that the horizontal components of soil cutting and soil-metal friction forces create the required draft of the machine. Based on these hypothesizes, mathematical formulas were developed to calculate torque, and draft requirements of the machine. To facilitate performing necessary calculations, the developed formulas were entered in a worksheet of the MS Excel software. According to the results of this study, the average experimental draft and torque of the machine tilling a silty clay loam soil were 16.8 N and 12.8 Nm, respectively. Furthermore, the average theoretical draft and torque of the machine were 13 N and 11.8 Nm respectively. These promising results can be considered as the accuracy check of the formulas developed herein.I AhmadiM BeigiFerdowsi University of Mashhadarticletheoretical modelingtorque and draft force measurementup-cut rotary tillerAgriculture (General)S1-972Engineering (General). Civil engineering (General)TA1-2040ENFAJournal of Agricultural Machinery, Vol 10, Iss 1, Pp 11-21 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN FA |
topic |
theoretical modeling torque and draft force measurement up-cut rotary tiller Agriculture (General) S1-972 Engineering (General). Civil engineering (General) TA1-2040 |
spellingShingle |
theoretical modeling torque and draft force measurement up-cut rotary tiller Agriculture (General) S1-972 Engineering (General). Civil engineering (General) TA1-2040 I Ahmadi M Beigi An Estimator for Torque and Draft Force Requirements of a New Up-cut Rotary Tiller |
description |
The aim of this study is to design, fabricate and evaluate a new type of up-cut rotary tiller and to develop correct formulas to estimate its torque and draft force using the laws of classical mechanics. In order to verify the model, a real-sized prototype of the rotary tiller was tested. It was hypothesized that four processes are involved to create the rotary tiller torque, namely soil cutting, soil lifting, soil-metal friction, and soil velocity. Furthermore, it was assumed that the horizontal components of soil cutting and soil-metal friction forces create the required draft of the machine. Based on these hypothesizes, mathematical formulas were developed to calculate torque, and draft requirements of the machine. To facilitate performing necessary calculations, the developed formulas were entered in a worksheet of the MS Excel software. According to the results of this study, the average experimental draft and torque of the machine tilling a silty clay loam soil were 16.8 N and 12.8 Nm, respectively. Furthermore, the average theoretical draft and torque of the machine were 13 N and 11.8 Nm respectively. These promising results can be considered as the accuracy check of the formulas developed herein. |
format |
article |
author |
I Ahmadi M Beigi |
author_facet |
I Ahmadi M Beigi |
author_sort |
I Ahmadi |
title |
An Estimator for Torque and Draft Force Requirements of a New Up-cut Rotary Tiller |
title_short |
An Estimator for Torque and Draft Force Requirements of a New Up-cut Rotary Tiller |
title_full |
An Estimator for Torque and Draft Force Requirements of a New Up-cut Rotary Tiller |
title_fullStr |
An Estimator for Torque and Draft Force Requirements of a New Up-cut Rotary Tiller |
title_full_unstemmed |
An Estimator for Torque and Draft Force Requirements of a New Up-cut Rotary Tiller |
title_sort |
estimator for torque and draft force requirements of a new up-cut rotary tiller |
publisher |
Ferdowsi University of Mashhad |
publishDate |
2020 |
url |
https://doaj.org/article/59b913a6f6fe4c1690a80baf6c500584 |
work_keys_str_mv |
AT iahmadi anestimatorfortorqueanddraftforcerequirementsofanewupcutrotarytiller AT mbeigi anestimatorfortorqueanddraftforcerequirementsofanewupcutrotarytiller AT iahmadi estimatorfortorqueanddraftforcerequirementsofanewupcutrotarytiller AT mbeigi estimatorfortorqueanddraftforcerequirementsofanewupcutrotarytiller |
_version_ |
1718429835693391872 |