Celestial diamonds: conformal multiplets in celestial CFT
Abstract We examine the structure of global conformal multiplets in 2D celestial CFT. For a 4D bulk theory containing massless particles of spin s = 0 1 2 1 3 2 2 $$ \left\{0,\frac{1}{2},1,\frac{3}{2},2\right\} $$ we classify and construct all SL(2,ℂ) primary descendants which are organized into ‘ce...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/59d4685906d744059dbeecab772127bd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:59d4685906d744059dbeecab772127bd |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:59d4685906d744059dbeecab772127bd2021-11-14T12:40:39ZCelestial diamonds: conformal multiplets in celestial CFT10.1007/JHEP11(2021)0721029-8479https://doaj.org/article/59d4685906d744059dbeecab772127bd2021-11-01T00:00:00Zhttps://doi.org/10.1007/JHEP11(2021)072https://doaj.org/toc/1029-8479Abstract We examine the structure of global conformal multiplets in 2D celestial CFT. For a 4D bulk theory containing massless particles of spin s = 0 1 2 1 3 2 2 $$ \left\{0,\frac{1}{2},1,\frac{3}{2},2\right\} $$ we classify and construct all SL(2,ℂ) primary descendants which are organized into ‘celestial diamonds’. This explicit construction is achieved using a wavefunction-based approach that allows us to map 4D scattering amplitudes to celestial CFT correlators of operators with SL(2,ℂ) conformal dimension ∆ and spin J. Radiative conformal primary wavefunctions have J = ±s and give rise to conformally soft theorems for special values of ∆ ∈ 1 2 ℤ $$ \frac{1}{2}\mathbb{Z} $$ . They are located either at the top of celestial diamonds, where they descend to trivial null primaries, or at the left and right corners, where they descend both to and from generalized conformal primary wavefunctions which have |J| ≤ s. Celestial diamonds naturally incorporate degeneracies of opposite helicity particles via the 2D shadow transform relating radiative primaries and account for the global and asymptotic symmetries in gauge theory and gravity.Sabrina PasterskiAndrea PuhmEmilio TrevisaniSpringerOpenarticleGauge-gravity correspondenceScattering AmplitudesSpace-Time SymmetriesSpontaneous Symmetry BreakingNuclear and particle physics. Atomic energy. RadioactivityQC770-798ENJournal of High Energy Physics, Vol 2021, Iss 11, Pp 1-54 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Gauge-gravity correspondence Scattering Amplitudes Space-Time Symmetries Spontaneous Symmetry Breaking Nuclear and particle physics. Atomic energy. Radioactivity QC770-798 |
spellingShingle |
Gauge-gravity correspondence Scattering Amplitudes Space-Time Symmetries Spontaneous Symmetry Breaking Nuclear and particle physics. Atomic energy. Radioactivity QC770-798 Sabrina Pasterski Andrea Puhm Emilio Trevisani Celestial diamonds: conformal multiplets in celestial CFT |
description |
Abstract We examine the structure of global conformal multiplets in 2D celestial CFT. For a 4D bulk theory containing massless particles of spin s = 0 1 2 1 3 2 2 $$ \left\{0,\frac{1}{2},1,\frac{3}{2},2\right\} $$ we classify and construct all SL(2,ℂ) primary descendants which are organized into ‘celestial diamonds’. This explicit construction is achieved using a wavefunction-based approach that allows us to map 4D scattering amplitudes to celestial CFT correlators of operators with SL(2,ℂ) conformal dimension ∆ and spin J. Radiative conformal primary wavefunctions have J = ±s and give rise to conformally soft theorems for special values of ∆ ∈ 1 2 ℤ $$ \frac{1}{2}\mathbb{Z} $$ . They are located either at the top of celestial diamonds, where they descend to trivial null primaries, or at the left and right corners, where they descend both to and from generalized conformal primary wavefunctions which have |J| ≤ s. Celestial diamonds naturally incorporate degeneracies of opposite helicity particles via the 2D shadow transform relating radiative primaries and account for the global and asymptotic symmetries in gauge theory and gravity. |
format |
article |
author |
Sabrina Pasterski Andrea Puhm Emilio Trevisani |
author_facet |
Sabrina Pasterski Andrea Puhm Emilio Trevisani |
author_sort |
Sabrina Pasterski |
title |
Celestial diamonds: conformal multiplets in celestial CFT |
title_short |
Celestial diamonds: conformal multiplets in celestial CFT |
title_full |
Celestial diamonds: conformal multiplets in celestial CFT |
title_fullStr |
Celestial diamonds: conformal multiplets in celestial CFT |
title_full_unstemmed |
Celestial diamonds: conformal multiplets in celestial CFT |
title_sort |
celestial diamonds: conformal multiplets in celestial cft |
publisher |
SpringerOpen |
publishDate |
2021 |
url |
https://doaj.org/article/59d4685906d744059dbeecab772127bd |
work_keys_str_mv |
AT sabrinapasterski celestialdiamondsconformalmultipletsincelestialcft AT andreapuhm celestialdiamondsconformalmultipletsincelestialcft AT emiliotrevisani celestialdiamondsconformalmultipletsincelestialcft |
_version_ |
1718429107230867456 |