Celestial diamonds: conformal multiplets in celestial CFT

Abstract We examine the structure of global conformal multiplets in 2D celestial CFT. For a 4D bulk theory containing massless particles of spin s = 0 1 2 1 3 2 2 $$ \left\{0,\frac{1}{2},1,\frac{3}{2},2\right\} $$ we classify and construct all SL(2,ℂ) primary descendants which are organized into ‘ce...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sabrina Pasterski, Andrea Puhm, Emilio Trevisani
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2021
Materias:
Acceso en línea:https://doaj.org/article/59d4685906d744059dbeecab772127bd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:59d4685906d744059dbeecab772127bd
record_format dspace
spelling oai:doaj.org-article:59d4685906d744059dbeecab772127bd2021-11-14T12:40:39ZCelestial diamonds: conformal multiplets in celestial CFT10.1007/JHEP11(2021)0721029-8479https://doaj.org/article/59d4685906d744059dbeecab772127bd2021-11-01T00:00:00Zhttps://doi.org/10.1007/JHEP11(2021)072https://doaj.org/toc/1029-8479Abstract We examine the structure of global conformal multiplets in 2D celestial CFT. For a 4D bulk theory containing massless particles of spin s = 0 1 2 1 3 2 2 $$ \left\{0,\frac{1}{2},1,\frac{3}{2},2\right\} $$ we classify and construct all SL(2,ℂ) primary descendants which are organized into ‘celestial diamonds’. This explicit construction is achieved using a wavefunction-based approach that allows us to map 4D scattering amplitudes to celestial CFT correlators of operators with SL(2,ℂ) conformal dimension ∆ and spin J. Radiative conformal primary wavefunctions have J = ±s and give rise to conformally soft theorems for special values of ∆ ∈ 1 2 ℤ $$ \frac{1}{2}\mathbb{Z} $$ . They are located either at the top of celestial diamonds, where they descend to trivial null primaries, or at the left and right corners, where they descend both to and from generalized conformal primary wavefunctions which have |J| ≤ s. Celestial diamonds naturally incorporate degeneracies of opposite helicity particles via the 2D shadow transform relating radiative primaries and account for the global and asymptotic symmetries in gauge theory and gravity.Sabrina PasterskiAndrea PuhmEmilio TrevisaniSpringerOpenarticleGauge-gravity correspondenceScattering AmplitudesSpace-Time SymmetriesSpontaneous Symmetry BreakingNuclear and particle physics. Atomic energy. RadioactivityQC770-798ENJournal of High Energy Physics, Vol 2021, Iss 11, Pp 1-54 (2021)
institution DOAJ
collection DOAJ
language EN
topic Gauge-gravity correspondence
Scattering Amplitudes
Space-Time Symmetries
Spontaneous Symmetry Breaking
Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
spellingShingle Gauge-gravity correspondence
Scattering Amplitudes
Space-Time Symmetries
Spontaneous Symmetry Breaking
Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
Sabrina Pasterski
Andrea Puhm
Emilio Trevisani
Celestial diamonds: conformal multiplets in celestial CFT
description Abstract We examine the structure of global conformal multiplets in 2D celestial CFT. For a 4D bulk theory containing massless particles of spin s = 0 1 2 1 3 2 2 $$ \left\{0,\frac{1}{2},1,\frac{3}{2},2\right\} $$ we classify and construct all SL(2,ℂ) primary descendants which are organized into ‘celestial diamonds’. This explicit construction is achieved using a wavefunction-based approach that allows us to map 4D scattering amplitudes to celestial CFT correlators of operators with SL(2,ℂ) conformal dimension ∆ and spin J. Radiative conformal primary wavefunctions have J = ±s and give rise to conformally soft theorems for special values of ∆ ∈ 1 2 ℤ $$ \frac{1}{2}\mathbb{Z} $$ . They are located either at the top of celestial diamonds, where they descend to trivial null primaries, or at the left and right corners, where they descend both to and from generalized conformal primary wavefunctions which have |J| ≤ s. Celestial diamonds naturally incorporate degeneracies of opposite helicity particles via the 2D shadow transform relating radiative primaries and account for the global and asymptotic symmetries in gauge theory and gravity.
format article
author Sabrina Pasterski
Andrea Puhm
Emilio Trevisani
author_facet Sabrina Pasterski
Andrea Puhm
Emilio Trevisani
author_sort Sabrina Pasterski
title Celestial diamonds: conformal multiplets in celestial CFT
title_short Celestial diamonds: conformal multiplets in celestial CFT
title_full Celestial diamonds: conformal multiplets in celestial CFT
title_fullStr Celestial diamonds: conformal multiplets in celestial CFT
title_full_unstemmed Celestial diamonds: conformal multiplets in celestial CFT
title_sort celestial diamonds: conformal multiplets in celestial cft
publisher SpringerOpen
publishDate 2021
url https://doaj.org/article/59d4685906d744059dbeecab772127bd
work_keys_str_mv AT sabrinapasterski celestialdiamondsconformalmultipletsincelestialcft
AT andreapuhm celestialdiamondsconformalmultipletsincelestialcft
AT emiliotrevisani celestialdiamondsconformalmultipletsincelestialcft
_version_ 1718429107230867456