Hybrid Matrix Completion Model for Improved Images Recovery and Recommendation Systems
Matrix completion methods have been widely applied in images recovery and recommendation systems. Most of them are only based on the low-rank characteristics of matrices to predict the missing entries. However, these methods lack consideration of local information. To further improve the performance...
Guardado en:
Autores principales: | Kai Xu, Ying Zhang, Zhurong Dong, Zhanyu Li, Bopeng Fang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/59df01a50f12415ab26bdb8440bc89bf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Novel Hierarchical Deep Matrix Completion Method
por: Yaru Chen, et al.
Publicado: (2021) -
Metric Information Matrix for Maximum Mean Discrepancy for Domain Adaptation
por: Wenjuan Ren, et al.
Publicado: (2021) -
Application of Intelligent Recommendation for Agricultural Information: A Systematic Literature Review
por: Caixia Song, et al.
Publicado: (2021) -
A Hybrid-Preference Neural Model for Basket-Sensitive Item Recommendation
por: Zhiqiang Pan, et al.
Publicado: (2020) -
Integrating Collaborative Filtering and Matching-based Search for Product Recommendations
por: Abdullah,Noraswaliza, et al.
Publicado: (2013)