Continuous embedding between P-de Branges spaces

In this paper we study the continuity of the embedding operator ℓ : ℋp(E) ↪ ℋ q(E) when 0 < p < q ⩽ ∞. The necessary and sufficient condition has already been described in [10] if p > 1. In this work, we address the problem when p = 1, using a new approach, but asking some additional hypoth...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bellavita Carlo
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/59ec5e217b4e4bbab41f4063da4b7d4e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:59ec5e217b4e4bbab41f4063da4b7d4e
record_format dspace
spelling oai:doaj.org-article:59ec5e217b4e4bbab41f4063da4b7d4e2021-12-05T14:10:45ZContinuous embedding between P-de Branges spaces2299-328210.1515/conop-2020-0118https://doaj.org/article/59ec5e217b4e4bbab41f4063da4b7d4e2021-08-01T00:00:00Zhttps://doi.org/10.1515/conop-2020-0118https://doaj.org/toc/2299-3282In this paper we study the continuity of the embedding operator ℓ : ℋp(E) ↪ ℋ q(E) when 0 < p < q ⩽ ∞. The necessary and sufficient condition has already been described in [10] if p > 1. In this work, we address the problem when p = 1, using a new approach, but asking some additional hypothesis about the Hermite-Biehler function E. We give also a different proof for the case p > 1.Bellavita CarloDe Gruyterarticlede branges spacescontinuous embedding operator30h99MathematicsQA1-939ENConcrete Operators, Vol 8, Iss 1, Pp 125-134 (2021)
institution DOAJ
collection DOAJ
language EN
topic de branges spaces
continuous embedding operator
30h99
Mathematics
QA1-939
spellingShingle de branges spaces
continuous embedding operator
30h99
Mathematics
QA1-939
Bellavita Carlo
Continuous embedding between P-de Branges spaces
description In this paper we study the continuity of the embedding operator ℓ : ℋp(E) ↪ ℋ q(E) when 0 < p < q ⩽ ∞. The necessary and sufficient condition has already been described in [10] if p > 1. In this work, we address the problem when p = 1, using a new approach, but asking some additional hypothesis about the Hermite-Biehler function E. We give also a different proof for the case p > 1.
format article
author Bellavita Carlo
author_facet Bellavita Carlo
author_sort Bellavita Carlo
title Continuous embedding between P-de Branges spaces
title_short Continuous embedding between P-de Branges spaces
title_full Continuous embedding between P-de Branges spaces
title_fullStr Continuous embedding between P-de Branges spaces
title_full_unstemmed Continuous embedding between P-de Branges spaces
title_sort continuous embedding between p-de branges spaces
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/59ec5e217b4e4bbab41f4063da4b7d4e
work_keys_str_mv AT bellavitacarlo continuousembeddingbetweenpdebrangesspaces
_version_ 1718371762699239424