On Random Subspace Optimization-Based Hybrid Computing Models Predicting the California Bearing Ratio of Soils
The California Bearing Ratio (CBR) is an important index for evaluating the bearing capacity of pavement subgrade materials. In this research, random subspace optimization-based hybrid computing models were trained and developed for the prediction of the CBR of soil. Three models were developed, nam...
Guardado en:
Autores principales: | Duong Kien Trong, Binh Thai Pham, Fazal E. Jalal, Mudassir Iqbal, Panayiotis C. Roussis, Anna Mamou, Maria Ferentinou, Dung Quang Vu, Nguyen Duc Dam, Quoc Anh Tran, Panagiotis G. Asteris |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/59ee155596294df6b4582f9338ca8190 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
THEORETICAL ANALYSIS OF INFLUENTIAL PARAMETERS TO COMPRESSION AND DECOMPRESSION PROCESS OF COMPRESSED OIL IN HYDRAULIC SYSTEMS OF THE PRESS
por: MILUTIN ŽIVKOVIĆ
Publicado: (2016) -
Presenting new models to determine subgrade reaction modulus (Ks) for optimizing foundation calculations in coarse grained soils
por: Salari,Pouya, et al.
Publicado: (2020) -
Some mechanical properties of plywood produced from eucalyptus, beech, and poplar veneer
por: Bal,Bekir Cihad, et al.
Publicado: (2014) -
Determining the peat soil dynamic properties using geophysical methods
por: Basri Kasbi, et al.
Publicado: (2021) -
Mathematical model for bulk modulus of hydraulic oil containing air bubbles
por: Sayako SAKAMA, et al.
Publicado: (2015)