Co-evolution based machine-learning for predicting functional interactions between human genes

With the rise in number of eukaryotic species being fully sequenced, large scale phylogenetic profiling can give insights on gene function, Here, the authors describe a machine-learning approach that integrates co-evolution across eukaryotic clades to predict gene function and functional interaction...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Doron Stupp, Elad Sharon, Idit Bloch, Marinka Zitnik, Or Zuk, Yuval Tabach
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/59ff6a7933cf40ff80afbe2c5b1265df
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:59ff6a7933cf40ff80afbe2c5b1265df
record_format dspace
spelling oai:doaj.org-article:59ff6a7933cf40ff80afbe2c5b1265df2021-11-14T12:36:30ZCo-evolution based machine-learning for predicting functional interactions between human genes10.1038/s41467-021-26792-w2041-1723https://doaj.org/article/59ff6a7933cf40ff80afbe2c5b1265df2021-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-26792-whttps://doaj.org/toc/2041-1723With the rise in number of eukaryotic species being fully sequenced, large scale phylogenetic profiling can give insights on gene function, Here, the authors describe a machine-learning approach that integrates co-evolution across eukaryotic clades to predict gene function and functional interactions among human genes.Doron StuppElad SharonIdit BlochMarinka ZitnikOr ZukYuval TabachNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Doron Stupp
Elad Sharon
Idit Bloch
Marinka Zitnik
Or Zuk
Yuval Tabach
Co-evolution based machine-learning for predicting functional interactions between human genes
description With the rise in number of eukaryotic species being fully sequenced, large scale phylogenetic profiling can give insights on gene function, Here, the authors describe a machine-learning approach that integrates co-evolution across eukaryotic clades to predict gene function and functional interactions among human genes.
format article
author Doron Stupp
Elad Sharon
Idit Bloch
Marinka Zitnik
Or Zuk
Yuval Tabach
author_facet Doron Stupp
Elad Sharon
Idit Bloch
Marinka Zitnik
Or Zuk
Yuval Tabach
author_sort Doron Stupp
title Co-evolution based machine-learning for predicting functional interactions between human genes
title_short Co-evolution based machine-learning for predicting functional interactions between human genes
title_full Co-evolution based machine-learning for predicting functional interactions between human genes
title_fullStr Co-evolution based machine-learning for predicting functional interactions between human genes
title_full_unstemmed Co-evolution based machine-learning for predicting functional interactions between human genes
title_sort co-evolution based machine-learning for predicting functional interactions between human genes
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/59ff6a7933cf40ff80afbe2c5b1265df
work_keys_str_mv AT doronstupp coevolutionbasedmachinelearningforpredictingfunctionalinteractionsbetweenhumangenes
AT eladsharon coevolutionbasedmachinelearningforpredictingfunctionalinteractionsbetweenhumangenes
AT iditbloch coevolutionbasedmachinelearningforpredictingfunctionalinteractionsbetweenhumangenes
AT marinkazitnik coevolutionbasedmachinelearningforpredictingfunctionalinteractionsbetweenhumangenes
AT orzuk coevolutionbasedmachinelearningforpredictingfunctionalinteractionsbetweenhumangenes
AT yuvaltabach coevolutionbasedmachinelearningforpredictingfunctionalinteractionsbetweenhumangenes
_version_ 1718429107419611136