AEDCN-Net: Accurate and Efficient Deep Convolutional Neural Network Model for Medical Image Segmentation
Image segmentation was significantly enhanced after the emergence of deep learning (DL) methods. In particular, deep convolutional neural networks (DCNNs) have assisted DL-based segmentation models to achieve state-of-the-art performance in fields critical to human beings, such as medicine. However,...
Guardado en:
Autores principales: | Bekhzod Olimov, Seok-Joo Koh, Jeonghong Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5a00f2f25a5f4e15940e37a144bf41c4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Mapping Relict Charcoal Hearths in New England Using Deep Convolutional Neural Networks and LiDAR Data
por: Ji Won Suh, et al.
Publicado: (2021) -
Automatic Electroencephalogram Artifact Removal Using Deep Convolutional Neural Networks
por: Fabio Lopes, et al.
Publicado: (2021) -
Review of Image Classification Algorithms Based on Convolutional Neural Networks
por: Leiyu Chen, et al.
Publicado: (2021) -
A Dual Network for Super-Resolution and Semantic Segmentation of Sentinel-2 Imagery
por: Saüc Abadal, et al.
Publicado: (2021) -
Crack recognition automation in concrete bridges using Deep Convolutional Neural Networks
por: Zoubir Hajar, et al.
Publicado: (2021)