AEDCN-Net: Accurate and Efficient Deep Convolutional Neural Network Model for Medical Image Segmentation
Image segmentation was significantly enhanced after the emergence of deep learning (DL) methods. In particular, deep convolutional neural networks (DCNNs) have assisted DL-based segmentation models to achieve state-of-the-art performance in fields critical to human beings, such as medicine. However,...
Enregistré dans:
Auteurs principaux: | Bekhzod Olimov, Seok-Joo Koh, Jeonghong Kim |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/5a00f2f25a5f4e15940e37a144bf41c4 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Mapping Relict Charcoal Hearths in New England Using Deep Convolutional Neural Networks and LiDAR Data
par: Ji Won Suh, et autres
Publié: (2021) -
Automatic Electroencephalogram Artifact Removal Using Deep Convolutional Neural Networks
par: Fabio Lopes, et autres
Publié: (2021) -
Review of Image Classification Algorithms Based on Convolutional Neural Networks
par: Leiyu Chen, et autres
Publié: (2021) -
A Dual Network for Super-Resolution and Semantic Segmentation of Sentinel-2 Imagery
par: Saüc Abadal, et autres
Publié: (2021) -
Crack recognition automation in concrete bridges using Deep Convolutional Neural Networks
par: Zoubir Hajar, et autres
Publié: (2021)