Chandrasekhar quadratic and cubic integral equations via Volterra-Stieltjes quadratic integral equation

In this work, we study the existence of one and exactly one solution x∈C[0,1]x\in C\left[0,1], for a delay quadratic integral equation of Volterra-Stieltjes type. As special cases we study a delay quadratic integral equation of fractional order and a Chandrasekhar cubic integral equation.

Guardado en:
Detalles Bibliográficos
Autores principales: El-Sayed Ahmed M. A., Omar Yasmin M. Y.
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/5a214983c0be4799acda628127ddfb67
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5a214983c0be4799acda628127ddfb67
record_format dspace
spelling oai:doaj.org-article:5a214983c0be4799acda628127ddfb672021-12-05T14:10:45ZChandrasekhar quadratic and cubic integral equations via Volterra-Stieltjes quadratic integral equation2391-466110.1515/dema-2021-0003https://doaj.org/article/5a214983c0be4799acda628127ddfb672021-05-01T00:00:00Zhttps://doi.org/10.1515/dema-2021-0003https://doaj.org/toc/2391-4661In this work, we study the existence of one and exactly one solution x∈C[0,1]x\in C\left[0,1], for a delay quadratic integral equation of Volterra-Stieltjes type. As special cases we study a delay quadratic integral equation of fractional order and a Chandrasekhar cubic integral equation.El-Sayed Ahmed M. A.Omar Yasmin M. Y.De Gruyterarticlevolterra-stieltjes typecontinuous solutiondelay functional integral equationcontinuous dependence74h1045g1047h30MathematicsQA1-939ENDemonstratio Mathematica, Vol 54, Iss 1, Pp 25-36 (2021)
institution DOAJ
collection DOAJ
language EN
topic volterra-stieltjes type
continuous solution
delay functional integral equation
continuous dependence
74h10
45g10
47h30
Mathematics
QA1-939
spellingShingle volterra-stieltjes type
continuous solution
delay functional integral equation
continuous dependence
74h10
45g10
47h30
Mathematics
QA1-939
El-Sayed Ahmed M. A.
Omar Yasmin M. Y.
Chandrasekhar quadratic and cubic integral equations via Volterra-Stieltjes quadratic integral equation
description In this work, we study the existence of one and exactly one solution x∈C[0,1]x\in C\left[0,1], for a delay quadratic integral equation of Volterra-Stieltjes type. As special cases we study a delay quadratic integral equation of fractional order and a Chandrasekhar cubic integral equation.
format article
author El-Sayed Ahmed M. A.
Omar Yasmin M. Y.
author_facet El-Sayed Ahmed M. A.
Omar Yasmin M. Y.
author_sort El-Sayed Ahmed M. A.
title Chandrasekhar quadratic and cubic integral equations via Volterra-Stieltjes quadratic integral equation
title_short Chandrasekhar quadratic and cubic integral equations via Volterra-Stieltjes quadratic integral equation
title_full Chandrasekhar quadratic and cubic integral equations via Volterra-Stieltjes quadratic integral equation
title_fullStr Chandrasekhar quadratic and cubic integral equations via Volterra-Stieltjes quadratic integral equation
title_full_unstemmed Chandrasekhar quadratic and cubic integral equations via Volterra-Stieltjes quadratic integral equation
title_sort chandrasekhar quadratic and cubic integral equations via volterra-stieltjes quadratic integral equation
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/5a214983c0be4799acda628127ddfb67
work_keys_str_mv AT elsayedahmedma chandrasekharquadraticandcubicintegralequationsviavolterrastieltjesquadraticintegralequation
AT omaryasminmy chandrasekharquadraticandcubicintegralequationsviavolterrastieltjesquadraticintegralequation
_version_ 1718371762910003200