Chandrasekhar quadratic and cubic integral equations via Volterra-Stieltjes quadratic integral equation
In this work, we study the existence of one and exactly one solution x∈C[0,1]x\in C\left[0,1], for a delay quadratic integral equation of Volterra-Stieltjes type. As special cases we study a delay quadratic integral equation of fractional order and a Chandrasekhar cubic integral equation.
Guardado en:
Autores principales: | El-Sayed Ahmed M. A., Omar Yasmin M. Y. |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5a214983c0be4799acda628127ddfb67 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Entire solutions for several general quadratic trinomial differential difference equations
por: Luo Jun, et al.
Publicado: (2021) -
On a Type of Volterra Integral Equation in the Space of Continuous Functions with Bounded Variation valued in Banach Spaces
por: Leiva,Hugo, et al.
Publicado: (2015) -
Solving two-dimensional nonlinear fuzzy Volterra integral equations by homotopy analysis method
por: Georgieva Atanaska
Publicado: (2021) -
Existence Solution for Coupled System of Langevin Fractional Differential Equations of Caputo Type with Riemann–Stieltjes Integral Boundary Conditions
por: Ahmed Salem, et al.
Publicado: (2021) -
Generalization of Darbo-type theorem and application on existence of implicit fractional integral equations in tempered sequence spaces
por: Anupam Das, et al.
Publicado: (2022)