A radiomics-based model for predicting prognosis of locally advanced gastric cancer in the preoperative setting
Abstract This study aims to evaluate the performance of a radiomic signature-based model for predicting recurrence-free survival (RFS) of locally advanced gastric cancer (LAGC) using preoperative contrast-enhanced CT. This retrospective study included a training cohort (349 patients) and an external...
Guardado en:
Autores principales: | Jaeseung Shin, Joon Seok Lim, Yong-Min Huh, Jie-Hyun Kim, Woo Jin Hyung, Jae-Joon Chung, Kyunghwa Han, Sungwon Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5a31cc85865d48f381b17c8ea5403991 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Pattern analysis for prognosis of differentiated thyroid cancer according to preoperative serum thyrotropin levels
por: Hosu Kim, et al.
Publicado: (2021) -
Radiomics machine learning study with a small sample size: Single random training-test set split may lead to unreliable results.
por: Chansik An, et al.
Publicado: (2021) -
Preoperative prediction of perineural invasion with multi-modality radiomics in rectal cancer
por: Yu Guo, et al.
Publicado: (2021) -
High endothelial venule is a surrogate biomarker for T-cell inflamed tumor microenvironment and prognosis in gastric cancer
por: Won Suk Lee, et al.
Publicado: (2021) -
Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans
por: Hwan-ho Cho, et al.
Publicado: (2021)