Damage mechanism identification in composites via machine learning and acoustic emission

Abstract Damage mechanism identification has scientific and practical ramifications for the structural health monitoring, design, and application of composite systems. Recent advances in machine learning uncover pathways to identify the waveform-damage mechanism relationship in higher-dimensional sp...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: C. Muir, B. Swaminathan, A. S. Almansour, K. Sevener, C. Smith, M. Presby, J. D. Kiser, T. M. Pollock, S. Daly
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/5a391a082cb849568002aaccc64712ce
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5a391a082cb849568002aaccc64712ce
record_format dspace
spelling oai:doaj.org-article:5a391a082cb849568002aaccc64712ce2021-12-02T17:12:24ZDamage mechanism identification in composites via machine learning and acoustic emission10.1038/s41524-021-00565-x2057-3960https://doaj.org/article/5a391a082cb849568002aaccc64712ce2021-06-01T00:00:00Zhttps://doi.org/10.1038/s41524-021-00565-xhttps://doaj.org/toc/2057-3960Abstract Damage mechanism identification has scientific and practical ramifications for the structural health monitoring, design, and application of composite systems. Recent advances in machine learning uncover pathways to identify the waveform-damage mechanism relationship in higher-dimensional spaces for a comprehensive understanding of damage evolution. This review evaluates the state of the field, beginning with a physics-based understanding of acoustic emission waveform feature extraction, followed by a detailed overview of waveform clustering, labeling, and error analysis strategies. Fundamental requirements for damage mechanism identification in any machine learning framework, including those currently in use, under development, and yet to be explored, are discussed.C. MuirB. SwaminathanA. S. AlmansourK. SevenerC. SmithM. PresbyJ. D. KiserT. M. PollockS. DalyNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Computer softwareQA76.75-76.765ENnpj Computational Materials, Vol 7, Iss 1, Pp 1-15 (2021)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
Computer software
QA76.75-76.765
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Computer software
QA76.75-76.765
C. Muir
B. Swaminathan
A. S. Almansour
K. Sevener
C. Smith
M. Presby
J. D. Kiser
T. M. Pollock
S. Daly
Damage mechanism identification in composites via machine learning and acoustic emission
description Abstract Damage mechanism identification has scientific and practical ramifications for the structural health monitoring, design, and application of composite systems. Recent advances in machine learning uncover pathways to identify the waveform-damage mechanism relationship in higher-dimensional spaces for a comprehensive understanding of damage evolution. This review evaluates the state of the field, beginning with a physics-based understanding of acoustic emission waveform feature extraction, followed by a detailed overview of waveform clustering, labeling, and error analysis strategies. Fundamental requirements for damage mechanism identification in any machine learning framework, including those currently in use, under development, and yet to be explored, are discussed.
format article
author C. Muir
B. Swaminathan
A. S. Almansour
K. Sevener
C. Smith
M. Presby
J. D. Kiser
T. M. Pollock
S. Daly
author_facet C. Muir
B. Swaminathan
A. S. Almansour
K. Sevener
C. Smith
M. Presby
J. D. Kiser
T. M. Pollock
S. Daly
author_sort C. Muir
title Damage mechanism identification in composites via machine learning and acoustic emission
title_short Damage mechanism identification in composites via machine learning and acoustic emission
title_full Damage mechanism identification in composites via machine learning and acoustic emission
title_fullStr Damage mechanism identification in composites via machine learning and acoustic emission
title_full_unstemmed Damage mechanism identification in composites via machine learning and acoustic emission
title_sort damage mechanism identification in composites via machine learning and acoustic emission
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/5a391a082cb849568002aaccc64712ce
work_keys_str_mv AT cmuir damagemechanismidentificationincompositesviamachinelearningandacousticemission
AT bswaminathan damagemechanismidentificationincompositesviamachinelearningandacousticemission
AT asalmansour damagemechanismidentificationincompositesviamachinelearningandacousticemission
AT ksevener damagemechanismidentificationincompositesviamachinelearningandacousticemission
AT csmith damagemechanismidentificationincompositesviamachinelearningandacousticemission
AT mpresby damagemechanismidentificationincompositesviamachinelearningandacousticemission
AT jdkiser damagemechanismidentificationincompositesviamachinelearningandacousticemission
AT tmpollock damagemechanismidentificationincompositesviamachinelearningandacousticemission
AT sdaly damagemechanismidentificationincompositesviamachinelearningandacousticemission
_version_ 1718381379643768832