Damage mechanism identification in composites via machine learning and acoustic emission
Abstract Damage mechanism identification has scientific and practical ramifications for the structural health monitoring, design, and application of composite systems. Recent advances in machine learning uncover pathways to identify the waveform-damage mechanism relationship in higher-dimensional sp...
Guardado en:
Autores principales: | C. Muir, B. Swaminathan, A. S. Almansour, K. Sevener, C. Smith, M. Presby, J. D. Kiser, T. M. Pollock, S. Daly |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5a391a082cb849568002aaccc64712ce |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A machine learning framework for damage mechanism identification from acoustic emissions in unidirectional SiC/SiC composites
por: C. Muir, et al.
Publicado: (2021) -
Machine learning for perovskite materials design and discovery
por: Qiuling Tao, et al.
Publicado: (2021) -
Rational design of chemically complex metallic glasses by hybrid modeling guided machine learning
por: Z. Q. Zhou, et al.
Publicado: (2021) -
Learning surface molecular structures via machine vision
por: Maxim Ziatdinov, et al.
Publicado: (2017) -
Predicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning models
por: Elisabeth J. Schiessler, et al.
Publicado: (2021)