GIS-Based Groundwater Potential Assessment in Varied Topographic Areas of Mianyang City, Southwestern China, Using AHP

Mianyang City is located in the varied topographic areas of Sichuan Province in southwestern China and is characterized by a complex geological background. This area is prone to disasters and its varied topography is inconvenient for emergency water storage and supply. Groundwater is essential for a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Qing Zhang, Shuangxi Zhang, Yu Zhang, Mengkui Li, Yu Wei, Meng Chen, Zeyi Zhang, Zhouqing Dai
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
GIS
RS
AHP
Q
Acceso en línea:https://doaj.org/article/5a6107e00905400aae4bbc2e6359a4df
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Mianyang City is located in the varied topographic areas of Sichuan Province in southwestern China and is characterized by a complex geological background. This area is prone to disasters and its varied topography is inconvenient for emergency water storage and supply. Groundwater is essential for alleviating the demand for water and post-disaster emergency water supply in this area. This study applied AHP to integrate remote sensing, geological and hydrological data into GIS for the assessment of groundwater potential, providing a plan for the rational exploitation of groundwater and post-disaster emergency water supply in the area. Nine factors, including the spring calibration related to groundwater, were integrated by AHP after multicollinear checks. As a result, the geology-controlled groundwater potential map was classified into five levels with equal intervals. All the results were validated using borehole data, indicating the following: the areas with yield rates of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo><</mo><mn>1</mn><mi mathvariant="normal">t</mi><mo>/</mo><mi mathvariant="normal">d</mi></mrow><mi>·</mi><mi mathvariant="normal">m</mi></mrow></semantics></math></inline-formula>, 1–20 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi mathvariant="normal">t</mi><mo>/</mo><mi mathvariant="normal">d</mi></mrow><mi>·</mi><mi mathvariant="normal">m</mi></mrow></semantics></math></inline-formula>, and 20–400 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi mathvariant="normal">t</mi><mo>/</mo><mi mathvariant="normal">d</mi></mrow><mi>·</mi><mi mathvariant="normal">m</mi></mrow></semantics></math></inline-formula> accounted for 2.66%, 36.1%, and 39.62%, respectively, whereas the areas with yield rates of 400–4000 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi mathvariant="normal">t</mi><mo>/</mo><mi mathvariant="normal">d</mi></mrow><mi>·</mi><mi mathvariant="normal">m</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>></mo><mn>4000</mn><mi mathvariant="normal">t</mi><mo>/</mo><mi mathvariant="normal">d</mi></mrow><mi>·</mi><mi mathvariant="normal">m</mi></mrow></semantics></math></inline-formula> accounted for only 20.88% and 0.75% of the overall area. The flexibility of this quick and efficient method enables its application in other regions with a similar geological background.