Representation of molecular structures with persistent homology for machine learning applications in chemistry

The choice of molecular representations can severely impact the performances of machine-learning methods. Here the authors demonstrate a persistence homology based molecular representation through an active-learning approach for predicting CO2/N2 interaction energies at the density functional theory...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jacob Townsend, Cassie Putman Micucci, John H. Hymel, Vasileios Maroulas, Konstantinos D. Vogiatzis
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/5a638e6c37334f2eb4cc47e69d8c65d8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The choice of molecular representations can severely impact the performances of machine-learning methods. Here the authors demonstrate a persistence homology based molecular representation through an active-learning approach for predicting CO2/N2 interaction energies at the density functional theory (DFT) level.