Representation of molecular structures with persistent homology for machine learning applications in chemistry
The choice of molecular representations can severely impact the performances of machine-learning methods. Here the authors demonstrate a persistence homology based molecular representation through an active-learning approach for predicting CO2/N2 interaction energies at the density functional theory...
Guardado en:
| Autores principales: | , , , , |
|---|---|
| Formato: | article |
| Lenguaje: | EN |
| Publicado: |
Nature Portfolio
2020
|
| Materias: | |
| Acceso en línea: | https://doaj.org/article/5a638e6c37334f2eb4cc47e69d8c65d8 |
| Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Sumario: | The choice of molecular representations can severely impact the performances of machine-learning methods. Here the authors demonstrate a persistence homology based molecular representation through an active-learning approach for predicting CO2/N2 interaction energies at the density functional theory (DFT) level. |
|---|