Representation of molecular structures with persistent homology for machine learning applications in chemistry

The choice of molecular representations can severely impact the performances of machine-learning methods. Here the authors demonstrate a persistence homology based molecular representation through an active-learning approach for predicting CO2/N2 interaction energies at the density functional theory...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jacob Townsend, Cassie Putman Micucci, John H. Hymel, Vasileios Maroulas, Konstantinos D. Vogiatzis
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/5a638e6c37334f2eb4cc47e69d8c65d8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5a638e6c37334f2eb4cc47e69d8c65d8
record_format dspace
spelling oai:doaj.org-article:5a638e6c37334f2eb4cc47e69d8c65d82021-12-02T17:45:10ZRepresentation of molecular structures with persistent homology for machine learning applications in chemistry10.1038/s41467-020-17035-52041-1723https://doaj.org/article/5a638e6c37334f2eb4cc47e69d8c65d82020-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-17035-5https://doaj.org/toc/2041-1723The choice of molecular representations can severely impact the performances of machine-learning methods. Here the authors demonstrate a persistence homology based molecular representation through an active-learning approach for predicting CO2/N2 interaction energies at the density functional theory (DFT) level.Jacob TownsendCassie Putman MicucciJohn H. HymelVasileios MaroulasKonstantinos D. VogiatzisNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-9 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Jacob Townsend
Cassie Putman Micucci
John H. Hymel
Vasileios Maroulas
Konstantinos D. Vogiatzis
Representation of molecular structures with persistent homology for machine learning applications in chemistry
description The choice of molecular representations can severely impact the performances of machine-learning methods. Here the authors demonstrate a persistence homology based molecular representation through an active-learning approach for predicting CO2/N2 interaction energies at the density functional theory (DFT) level.
format article
author Jacob Townsend
Cassie Putman Micucci
John H. Hymel
Vasileios Maroulas
Konstantinos D. Vogiatzis
author_facet Jacob Townsend
Cassie Putman Micucci
John H. Hymel
Vasileios Maroulas
Konstantinos D. Vogiatzis
author_sort Jacob Townsend
title Representation of molecular structures with persistent homology for machine learning applications in chemistry
title_short Representation of molecular structures with persistent homology for machine learning applications in chemistry
title_full Representation of molecular structures with persistent homology for machine learning applications in chemistry
title_fullStr Representation of molecular structures with persistent homology for machine learning applications in chemistry
title_full_unstemmed Representation of molecular structures with persistent homology for machine learning applications in chemistry
title_sort representation of molecular structures with persistent homology for machine learning applications in chemistry
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/5a638e6c37334f2eb4cc47e69d8c65d8
work_keys_str_mv AT jacobtownsend representationofmolecularstructureswithpersistenthomologyformachinelearningapplicationsinchemistry
AT cassieputmanmicucci representationofmolecularstructureswithpersistenthomologyformachinelearningapplicationsinchemistry
AT johnhhymel representationofmolecularstructureswithpersistenthomologyformachinelearningapplicationsinchemistry
AT vasileiosmaroulas representationofmolecularstructureswithpersistenthomologyformachinelearningapplicationsinchemistry
AT konstantinosdvogiatzis representationofmolecularstructureswithpersistenthomologyformachinelearningapplicationsinchemistry
_version_ 1718379588143284224