Representation of molecular structures with persistent homology for machine learning applications in chemistry
The choice of molecular representations can severely impact the performances of machine-learning methods. Here the authors demonstrate a persistence homology based molecular representation through an active-learning approach for predicting CO2/N2 interaction energies at the density functional theory...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5a638e6c37334f2eb4cc47e69d8c65d8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5a638e6c37334f2eb4cc47e69d8c65d8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5a638e6c37334f2eb4cc47e69d8c65d82021-12-02T17:45:10ZRepresentation of molecular structures with persistent homology for machine learning applications in chemistry10.1038/s41467-020-17035-52041-1723https://doaj.org/article/5a638e6c37334f2eb4cc47e69d8c65d82020-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-17035-5https://doaj.org/toc/2041-1723The choice of molecular representations can severely impact the performances of machine-learning methods. Here the authors demonstrate a persistence homology based molecular representation through an active-learning approach for predicting CO2/N2 interaction energies at the density functional theory (DFT) level.Jacob TownsendCassie Putman MicucciJohn H. HymelVasileios MaroulasKonstantinos D. VogiatzisNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-9 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Jacob Townsend Cassie Putman Micucci John H. Hymel Vasileios Maroulas Konstantinos D. Vogiatzis Representation of molecular structures with persistent homology for machine learning applications in chemistry |
description |
The choice of molecular representations can severely impact the performances of machine-learning methods. Here the authors demonstrate a persistence homology based molecular representation through an active-learning approach for predicting CO2/N2 interaction energies at the density functional theory (DFT) level. |
format |
article |
author |
Jacob Townsend Cassie Putman Micucci John H. Hymel Vasileios Maroulas Konstantinos D. Vogiatzis |
author_facet |
Jacob Townsend Cassie Putman Micucci John H. Hymel Vasileios Maroulas Konstantinos D. Vogiatzis |
author_sort |
Jacob Townsend |
title |
Representation of molecular structures with persistent homology for machine learning applications in chemistry |
title_short |
Representation of molecular structures with persistent homology for machine learning applications in chemistry |
title_full |
Representation of molecular structures with persistent homology for machine learning applications in chemistry |
title_fullStr |
Representation of molecular structures with persistent homology for machine learning applications in chemistry |
title_full_unstemmed |
Representation of molecular structures with persistent homology for machine learning applications in chemistry |
title_sort |
representation of molecular structures with persistent homology for machine learning applications in chemistry |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/5a638e6c37334f2eb4cc47e69d8c65d8 |
work_keys_str_mv |
AT jacobtownsend representationofmolecularstructureswithpersistenthomologyformachinelearningapplicationsinchemistry AT cassieputmanmicucci representationofmolecularstructureswithpersistenthomologyformachinelearningapplicationsinchemistry AT johnhhymel representationofmolecularstructureswithpersistenthomologyformachinelearningapplicationsinchemistry AT vasileiosmaroulas representationofmolecularstructureswithpersistenthomologyformachinelearningapplicationsinchemistry AT konstantinosdvogiatzis representationofmolecularstructureswithpersistenthomologyformachinelearningapplicationsinchemistry |
_version_ |
1718379588143284224 |