Representation of molecular structures with persistent homology for machine learning applications in chemistry
The choice of molecular representations can severely impact the performances of machine-learning methods. Here the authors demonstrate a persistence homology based molecular representation through an active-learning approach for predicting CO2/N2 interaction energies at the density functional theory...
Guardado en:
Autores principales: | Jacob Townsend, Cassie Putman Micucci, John H. Hymel, Vasileios Maroulas, Konstantinos D. Vogiatzis |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5a638e6c37334f2eb4cc47e69d8c65d8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: Representation of molecular structures with persistent homology for machine learning applications in chemistry
por: Jacob Townsend, et al.
Publicado: (2020) -
Machine learning with persistent homology and chemical word embeddings improves prediction accuracy and interpretability in metal-organic frameworks
por: Aditi S. Krishnapriyan, et al.
Publicado: (2021) -
Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions
por: K. T. Schütt, et al.
Publicado: (2019) -
Higher-order structure of polymer melt described by persistent homology
por: Yohei Shimizu, et al.
Publicado: (2021) - Homology, homotopy, and applications HHA.