Sorting probability for large Young diagrams
Sorting probability for large Young diagrams, Discrete Analysis 2021:24, 57 pp. Let $P=(X,\leq_P)$ be a finite partially ordered set (or _poset_, for short). A _linear extension_ $L$ of $P$ is a total ordering $\leq_L$ on $X$ such that for every $x,y\in X$, if $x\leq_Py$, then $x\leq_Ly$. It is an...
Guardado en:
Autores principales: | Swee Hong Chan, Igor Pak, Greta Panova |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Diamond Open Access Journals
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5a6d138ff92046208eb85021131c21b9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Cooperative Coevolution with Two-Stage Decomposition for Large-Scale Global Optimization Problems
por: H. D. Yue, et al.
Publicado: (2021) -
Research on Systemic Risk of the Turkish Banking Industry Based on a Systemic Risk Measurement Framework of the Fractional Brownian Motion
por: Hong Fan, et al.
Publicado: (2021) -
Phase Diagram and Order Reconstruction Modeling for Nematics in Asymmetric π-Cells
por: Antonino Amoddeo, et al.
Publicado: (2021) -
Numerical Bichromatic Wave Generation Using Designed Mass Source Function
por: Min-yi Chen, et al.
Publicado: (2021) -
Mathematical Analysis of the TB Model with Treatment via Caputo-Type Fractional Derivative
por: Xiao-Hong Zhang, et al.
Publicado: (2021)