Multi-resolution localization of causal variants across the genome
GWAS analysis currently relies mostly on linear mixed models, which do not account for linkage disequilibrium (LD) between tested variants. Here, Sesia et al. propose KnockoffZoom, a non-parametric statistical method for the simultaneous discovery and fine-mapping of causal variants, assuming only t...
Enregistré dans:
Auteurs principaux: | Matteo Sesia, Eugene Katsevich, Stephen Bates, Emmanuel Candès, Chiara Sabatti |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/5a6f10c7c51540a6bf620c7a5cb1956c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Publisher Correction: Multi-resolution localization of causal variants across the genome
par: Matteo Sesia, et autres
Publié: (2020) -
Identifying causal variants by fine mapping across multiple studies.
par: Nathan LaPierre, et autres
Publié: (2021) -
Prioritizing disease and trait causal variants at the TNFAIP3 locus using functional and genomic features
par: John P. Ray, et autres
Publié: (2020) -
Localization of adaptive variants in human genomes using averaged one-dependence estimation
par: Lauren Alpert Sugden, et autres
Publié: (2018) -
The relativistic causality versus no-signaling paradigm for multi-party correlations
par: Paweł Horodecki, et autres
Publié: (2019)