Multi-task deep learning for cardiac rhythm detection in wearable devices
Abstract Wearable devices enable theoretically continuous, longitudinal monitoring of physiological measurements such as step count, energy expenditure, and heart rate. Although the classification of abnormal cardiac rhythms such as atrial fibrillation from wearable devices has great potential, comm...
Guardado en:
Autores principales: | Jessica Torres-Soto, Euan A. Ashley |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5a718835d2b145be865ed6e1fbd315a6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Measurement of respiratory rate using wearable devices and applications to COVID-19 detection
por: Aravind Natarajan, et al.
Publicado: (2021) -
Assessment of physiological signs associated with COVID-19 measured using wearable devices
por: Aravind Natarajan, et al.
Publicado: (2020) -
Development of digital measures for nighttime scratch and sleep using wrist-worn wearable devices
por: Nikhil Mahadevan, et al.
Publicado: (2021) -
A deep transfer learning approach for wearable sleep stage classification with photoplethysmography
por: Mustafa Radha, et al.
Publicado: (2021) -
Development of digital biomarkers for resting tremor and bradykinesia using a wrist-worn wearable device
por: Nikhil Mahadevan, et al.
Publicado: (2020)