Incorporation of causality structures to complex network analysis of time-varying behaviour of multivariate time series
Abstract This paper presents a new methodology for characterising the evolving behaviour of the time-varying causality between multivariate time series, from the perspective of change in the structure of the causality pattern. We propose that such evolutionary behaviour should be tracked by means of...
Guardado en:
Autores principales: | Leo Carlos-Sandberg, Christopher D. Clack |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5a756776cb0f46ce8a626619a361f9b0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Causality Distance Measures for Multivariate Time Series with Applications
por: Achilleas Anastasiou, et al.
Publicado: (2021) -
Constructing ordinal partition transition networks from multivariate time series
por: Jiayang Zhang, et al.
Publicado: (2017) -
Inference of causal networks from time-varying transcriptome data via sparse coding.
por: Kai Zhang, et al.
Publicado: (2012) -
Large-scale nonlinear Granger causality for inferring directed dependence from short multivariate time-series data
por: Axel Wismüller, et al.
Publicado: (2021) -
Predictive Error Compensating Wavelet Neural Network Model for Multivariable Time Series Prediction
por: Ajla Kulaglic, et al.
Publicado: (2021)