A prospective evaluation of AI-augmented epidemiology to forecast COVID-19 in the USA and Japan

Abstract The COVID-19 pandemic has highlighted the global need for reliable models of disease spread. We propose an AI-augmented forecast modeling framework that provides daily predictions of the expected number of confirmed COVID-19 deaths, cases, and hospitalizations during the following 4 weeks....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sercan Ö. Arık, Joel Shor, Rajarishi Sinha, Jinsung Yoon, Joseph R. Ledsam, Long T. Le, Michael W. Dusenberry, Nathanael C. Yoder, Kris Popendorf, Arkady Epshteyn, Johan Euphrosine, Elli Kanal, Isaac Jones, Chun-Liang Li, Beth Luan, Joe Mckenna, Vikas Menon, Shashank Singh, Mimi Sun, Ashwin Sura Ravi, Leyou Zhang, Dario Sava, Kane Cunningham, Hiroki Kayama, Thomas Tsai, Daisuke Yoneoka, Shuhei Nomura, Hiroaki Miyata, Tomas Pfister
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/5a7e3925daed42c8b7a7024387fa5045
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5a7e3925daed42c8b7a7024387fa5045
record_format dspace
spelling oai:doaj.org-article:5a7e3925daed42c8b7a7024387fa50452021-12-02T18:01:45ZA prospective evaluation of AI-augmented epidemiology to forecast COVID-19 in the USA and Japan10.1038/s41746-021-00511-72398-6352https://doaj.org/article/5a7e3925daed42c8b7a7024387fa50452021-10-01T00:00:00Zhttps://doi.org/10.1038/s41746-021-00511-7https://doaj.org/toc/2398-6352Abstract The COVID-19 pandemic has highlighted the global need for reliable models of disease spread. We propose an AI-augmented forecast modeling framework that provides daily predictions of the expected number of confirmed COVID-19 deaths, cases, and hospitalizations during the following 4 weeks. We present an international, prospective evaluation of our models’ performance across all states and counties in the USA and prefectures in Japan. Nationally, incident mean absolute percentage error (MAPE) for predicting COVID-19 associated deaths during prospective deployment remained consistently <8% (US) and <29% (Japan), while cumulative MAPE remained <2% (US) and <10% (Japan). We show that our models perform well even during periods of considerable change in population behavior, and are robust to demographic differences across different geographic locations. We further demonstrate that our framework provides meaningful explanatory insights with the models accurately adapting to local and national policy interventions. Our framework enables counterfactual simulations, which indicate continuing Non-Pharmaceutical Interventions alongside vaccinations is essential for faster recovery from the pandemic, delaying the application of interventions has a detrimental effect, and allow exploration of the consequences of different vaccination strategies. The COVID-19 pandemic remains a global emergency. In the face of substantial challenges ahead, the approach presented here has the potential to inform critical decisions.Sercan Ö. ArıkJoel ShorRajarishi SinhaJinsung YoonJoseph R. LedsamLong T. LeMichael W. DusenberryNathanael C. YoderKris PopendorfArkady EpshteynJohan EuphrosineElli KanalIsaac JonesChun-Liang LiBeth LuanJoe MckennaVikas MenonShashank SinghMimi SunAshwin Sura RaviLeyou ZhangDario SavaKane CunninghamHiroki KayamaThomas TsaiDaisuke YoneokaShuhei NomuraHiroaki MiyataTomas PfisterNature PortfolioarticleComputer applications to medicine. Medical informaticsR858-859.7ENnpj Digital Medicine, Vol 4, Iss 1, Pp 1-18 (2021)
institution DOAJ
collection DOAJ
language EN
topic Computer applications to medicine. Medical informatics
R858-859.7
spellingShingle Computer applications to medicine. Medical informatics
R858-859.7
Sercan Ö. Arık
Joel Shor
Rajarishi Sinha
Jinsung Yoon
Joseph R. Ledsam
Long T. Le
Michael W. Dusenberry
Nathanael C. Yoder
Kris Popendorf
Arkady Epshteyn
Johan Euphrosine
Elli Kanal
Isaac Jones
Chun-Liang Li
Beth Luan
Joe Mckenna
Vikas Menon
Shashank Singh
Mimi Sun
Ashwin Sura Ravi
Leyou Zhang
Dario Sava
Kane Cunningham
Hiroki Kayama
Thomas Tsai
Daisuke Yoneoka
Shuhei Nomura
Hiroaki Miyata
Tomas Pfister
A prospective evaluation of AI-augmented epidemiology to forecast COVID-19 in the USA and Japan
description Abstract The COVID-19 pandemic has highlighted the global need for reliable models of disease spread. We propose an AI-augmented forecast modeling framework that provides daily predictions of the expected number of confirmed COVID-19 deaths, cases, and hospitalizations during the following 4 weeks. We present an international, prospective evaluation of our models’ performance across all states and counties in the USA and prefectures in Japan. Nationally, incident mean absolute percentage error (MAPE) for predicting COVID-19 associated deaths during prospective deployment remained consistently <8% (US) and <29% (Japan), while cumulative MAPE remained <2% (US) and <10% (Japan). We show that our models perform well even during periods of considerable change in population behavior, and are robust to demographic differences across different geographic locations. We further demonstrate that our framework provides meaningful explanatory insights with the models accurately adapting to local and national policy interventions. Our framework enables counterfactual simulations, which indicate continuing Non-Pharmaceutical Interventions alongside vaccinations is essential for faster recovery from the pandemic, delaying the application of interventions has a detrimental effect, and allow exploration of the consequences of different vaccination strategies. The COVID-19 pandemic remains a global emergency. In the face of substantial challenges ahead, the approach presented here has the potential to inform critical decisions.
format article
author Sercan Ö. Arık
Joel Shor
Rajarishi Sinha
Jinsung Yoon
Joseph R. Ledsam
Long T. Le
Michael W. Dusenberry
Nathanael C. Yoder
Kris Popendorf
Arkady Epshteyn
Johan Euphrosine
Elli Kanal
Isaac Jones
Chun-Liang Li
Beth Luan
Joe Mckenna
Vikas Menon
Shashank Singh
Mimi Sun
Ashwin Sura Ravi
Leyou Zhang
Dario Sava
Kane Cunningham
Hiroki Kayama
Thomas Tsai
Daisuke Yoneoka
Shuhei Nomura
Hiroaki Miyata
Tomas Pfister
author_facet Sercan Ö. Arık
Joel Shor
Rajarishi Sinha
Jinsung Yoon
Joseph R. Ledsam
Long T. Le
Michael W. Dusenberry
Nathanael C. Yoder
Kris Popendorf
Arkady Epshteyn
Johan Euphrosine
Elli Kanal
Isaac Jones
Chun-Liang Li
Beth Luan
Joe Mckenna
Vikas Menon
Shashank Singh
Mimi Sun
Ashwin Sura Ravi
Leyou Zhang
Dario Sava
Kane Cunningham
Hiroki Kayama
Thomas Tsai
Daisuke Yoneoka
Shuhei Nomura
Hiroaki Miyata
Tomas Pfister
author_sort Sercan Ö. Arık
title A prospective evaluation of AI-augmented epidemiology to forecast COVID-19 in the USA and Japan
title_short A prospective evaluation of AI-augmented epidemiology to forecast COVID-19 in the USA and Japan
title_full A prospective evaluation of AI-augmented epidemiology to forecast COVID-19 in the USA and Japan
title_fullStr A prospective evaluation of AI-augmented epidemiology to forecast COVID-19 in the USA and Japan
title_full_unstemmed A prospective evaluation of AI-augmented epidemiology to forecast COVID-19 in the USA and Japan
title_sort prospective evaluation of ai-augmented epidemiology to forecast covid-19 in the usa and japan
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/5a7e3925daed42c8b7a7024387fa5045
work_keys_str_mv AT sercanoarık aprospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT joelshor aprospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT rajarishisinha aprospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT jinsungyoon aprospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT josephrledsam aprospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT longtle aprospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT michaelwdusenberry aprospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT nathanaelcyoder aprospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT krispopendorf aprospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT arkadyepshteyn aprospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT johaneuphrosine aprospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT ellikanal aprospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT isaacjones aprospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT chunliangli aprospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT bethluan aprospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT joemckenna aprospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT vikasmenon aprospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT shashanksingh aprospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT mimisun aprospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT ashwinsuraravi aprospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT leyouzhang aprospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT dariosava aprospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT kanecunningham aprospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT hirokikayama aprospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT thomastsai aprospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT daisukeyoneoka aprospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT shuheinomura aprospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT hiroakimiyata aprospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT tomaspfister aprospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT sercanoarık prospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT joelshor prospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT rajarishisinha prospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT jinsungyoon prospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT josephrledsam prospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT longtle prospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT michaelwdusenberry prospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT nathanaelcyoder prospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT krispopendorf prospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT arkadyepshteyn prospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT johaneuphrosine prospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT ellikanal prospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT isaacjones prospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT chunliangli prospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT bethluan prospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT joemckenna prospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT vikasmenon prospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT shashanksingh prospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT mimisun prospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT ashwinsuraravi prospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT leyouzhang prospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT dariosava prospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT kanecunningham prospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT hirokikayama prospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT thomastsai prospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT daisukeyoneoka prospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT shuheinomura prospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT hiroakimiyata prospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
AT tomaspfister prospectiveevaluationofaiaugmentedepidemiologytoforecastcovid19intheusaandjapan
_version_ 1718378928343613440