Colossal barocaloric effects in the complex hydride Li $$_{2}$$ 2 B $$_{12}$$ 12 H $$_{12}$$ 12

Abstract Traditional refrigeration technologies based on compression cycles of greenhouse gases pose serious threats to the environment and cannot be downscaled to electronic device dimensions. Solid-state cooling exploits the thermal response of caloric materials to changes in the applied external...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kartik Sau, Tamio Ikeshoji, Shigeyuki Takagi, Shin-ichi Orimo, Daniel Errandonea, Dewei Chu, Claudio Cazorla
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/5a9b7d5572db4118a8b9659d69f3f644
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Traditional refrigeration technologies based on compression cycles of greenhouse gases pose serious threats to the environment and cannot be downscaled to electronic device dimensions. Solid-state cooling exploits the thermal response of caloric materials to changes in the applied external fields (i.e., magnetic, electric and/or mechanical stress) and represents a promising alternative to current refrigeration methods. However, most of the caloric materials known to date present relatively small adiabatic temperature changes ( $$|\Delta T| \sim 1$$ | Δ T | ∼ 1 to 10 K) and/or limiting irreversibility issues resulting from significant phase-transition hysteresis. Here, we predict by using molecular dynamics simulations the existence of colossal barocaloric effects induced by pressure (isothermal entropy changes of $$|\Delta S| \sim 100$$ | Δ S | ∼ 100  J K $$^{-1}$$ - 1 kg $$^{-1}$$ - 1 ) in the energy material Li $$_{2}$$ 2 B $$_{12}$$ 12 H $$_{12}$$ 12 . Specifically, we estimate $$|\Delta S| = 367$$ | Δ S | = 367  J K $$^{-1}$$ - 1 kg $$^{-1}$$ - 1 and $$|\Delta T| = 43$$ | Δ T | = 43  K for a small pressure shift of P = 0.1 GPa at $$T = 480$$ T = 480  K. The disclosed colossal barocaloric effects are originated by a fairly reversible order–disorder phase transformation involving coexistence of Li $$^{+}$$ + diffusion and (BH) $$_{12}^{-2}$$ 12 - 2 reorientational motion at high temperatures.