Colossal barocaloric effects in the complex hydride Li $$_{2}$$ 2 B $$_{12}$$ 12 H $$_{12}$$ 12
Abstract Traditional refrigeration technologies based on compression cycles of greenhouse gases pose serious threats to the environment and cannot be downscaled to electronic device dimensions. Solid-state cooling exploits the thermal response of caloric materials to changes in the applied external...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5a9b7d5572db4118a8b9659d69f3f644 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5a9b7d5572db4118a8b9659d69f3f644 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5a9b7d5572db4118a8b9659d69f3f6442021-12-02T17:52:23ZColossal barocaloric effects in the complex hydride Li $$_{2}$$ 2 B $$_{12}$$ 12 H $$_{12}$$ 1210.1038/s41598-021-91123-42045-2322https://doaj.org/article/5a9b7d5572db4118a8b9659d69f3f6442021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-91123-4https://doaj.org/toc/2045-2322Abstract Traditional refrigeration technologies based on compression cycles of greenhouse gases pose serious threats to the environment and cannot be downscaled to electronic device dimensions. Solid-state cooling exploits the thermal response of caloric materials to changes in the applied external fields (i.e., magnetic, electric and/or mechanical stress) and represents a promising alternative to current refrigeration methods. However, most of the caloric materials known to date present relatively small adiabatic temperature changes ( $$|\Delta T| \sim 1$$ | Δ T | ∼ 1 to 10 K) and/or limiting irreversibility issues resulting from significant phase-transition hysteresis. Here, we predict by using molecular dynamics simulations the existence of colossal barocaloric effects induced by pressure (isothermal entropy changes of $$|\Delta S| \sim 100$$ | Δ S | ∼ 100 J K $$^{-1}$$ - 1 kg $$^{-1}$$ - 1 ) in the energy material Li $$_{2}$$ 2 B $$_{12}$$ 12 H $$_{12}$$ 12 . Specifically, we estimate $$|\Delta S| = 367$$ | Δ S | = 367 J K $$^{-1}$$ - 1 kg $$^{-1}$$ - 1 and $$|\Delta T| = 43$$ | Δ T | = 43 K for a small pressure shift of P = 0.1 GPa at $$T = 480$$ T = 480 K. The disclosed colossal barocaloric effects are originated by a fairly reversible order–disorder phase transformation involving coexistence of Li $$^{+}$$ + diffusion and (BH) $$_{12}^{-2}$$ 12 - 2 reorientational motion at high temperatures.Kartik SauTamio IkeshojiShigeyuki TakagiShin-ichi OrimoDaniel ErrandoneaDewei ChuClaudio CazorlaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Kartik Sau Tamio Ikeshoji Shigeyuki Takagi Shin-ichi Orimo Daniel Errandonea Dewei Chu Claudio Cazorla Colossal barocaloric effects in the complex hydride Li $$_{2}$$ 2 B $$_{12}$$ 12 H $$_{12}$$ 12 |
description |
Abstract Traditional refrigeration technologies based on compression cycles of greenhouse gases pose serious threats to the environment and cannot be downscaled to electronic device dimensions. Solid-state cooling exploits the thermal response of caloric materials to changes in the applied external fields (i.e., magnetic, electric and/or mechanical stress) and represents a promising alternative to current refrigeration methods. However, most of the caloric materials known to date present relatively small adiabatic temperature changes ( $$|\Delta T| \sim 1$$ | Δ T | ∼ 1 to 10 K) and/or limiting irreversibility issues resulting from significant phase-transition hysteresis. Here, we predict by using molecular dynamics simulations the existence of colossal barocaloric effects induced by pressure (isothermal entropy changes of $$|\Delta S| \sim 100$$ | Δ S | ∼ 100 J K $$^{-1}$$ - 1 kg $$^{-1}$$ - 1 ) in the energy material Li $$_{2}$$ 2 B $$_{12}$$ 12 H $$_{12}$$ 12 . Specifically, we estimate $$|\Delta S| = 367$$ | Δ S | = 367 J K $$^{-1}$$ - 1 kg $$^{-1}$$ - 1 and $$|\Delta T| = 43$$ | Δ T | = 43 K for a small pressure shift of P = 0.1 GPa at $$T = 480$$ T = 480 K. The disclosed colossal barocaloric effects are originated by a fairly reversible order–disorder phase transformation involving coexistence of Li $$^{+}$$ + diffusion and (BH) $$_{12}^{-2}$$ 12 - 2 reorientational motion at high temperatures. |
format |
article |
author |
Kartik Sau Tamio Ikeshoji Shigeyuki Takagi Shin-ichi Orimo Daniel Errandonea Dewei Chu Claudio Cazorla |
author_facet |
Kartik Sau Tamio Ikeshoji Shigeyuki Takagi Shin-ichi Orimo Daniel Errandonea Dewei Chu Claudio Cazorla |
author_sort |
Kartik Sau |
title |
Colossal barocaloric effects in the complex hydride Li $$_{2}$$ 2 B $$_{12}$$ 12 H $$_{12}$$ 12 |
title_short |
Colossal barocaloric effects in the complex hydride Li $$_{2}$$ 2 B $$_{12}$$ 12 H $$_{12}$$ 12 |
title_full |
Colossal barocaloric effects in the complex hydride Li $$_{2}$$ 2 B $$_{12}$$ 12 H $$_{12}$$ 12 |
title_fullStr |
Colossal barocaloric effects in the complex hydride Li $$_{2}$$ 2 B $$_{12}$$ 12 H $$_{12}$$ 12 |
title_full_unstemmed |
Colossal barocaloric effects in the complex hydride Li $$_{2}$$ 2 B $$_{12}$$ 12 H $$_{12}$$ 12 |
title_sort |
colossal barocaloric effects in the complex hydride li $$_{2}$$ 2 b $$_{12}$$ 12 h $$_{12}$$ 12 |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/5a9b7d5572db4118a8b9659d69f3f644 |
work_keys_str_mv |
AT kartiksau colossalbarocaloriceffectsinthecomplexhydrideli22b1212h1212 AT tamioikeshoji colossalbarocaloriceffectsinthecomplexhydrideli22b1212h1212 AT shigeyukitakagi colossalbarocaloriceffectsinthecomplexhydrideli22b1212h1212 AT shinichiorimo colossalbarocaloriceffectsinthecomplexhydrideli22b1212h1212 AT danielerrandonea colossalbarocaloriceffectsinthecomplexhydrideli22b1212h1212 AT deweichu colossalbarocaloriceffectsinthecomplexhydrideli22b1212h1212 AT claudiocazorla colossalbarocaloriceffectsinthecomplexhydrideli22b1212h1212 |
_version_ |
1718379227050409984 |