Charge–Transfer Fluorescence and Room-Temperature Phosphorescence from a Bisamide-Based Derivative
The development of organic luminescent materials with bimodal emissions of both fluorescence and room-temperature phosphorescent (RTP) remains a challenge. The investigation of the relationship between fluorescence and RTP performance is especially rare. In this work, we obtained an organic luminesc...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5aa5ea4606154dd8b35067f85ba435f3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5aa5ea4606154dd8b35067f85ba435f3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5aa5ea4606154dd8b35067f85ba435f32021-11-25T17:19:00ZCharge–Transfer Fluorescence and Room-Temperature Phosphorescence from a Bisamide-Based Derivative10.3390/cryst111113702073-4352https://doaj.org/article/5aa5ea4606154dd8b35067f85ba435f32021-11-01T00:00:00Zhttps://www.mdpi.com/2073-4352/11/11/1370https://doaj.org/toc/2073-4352The development of organic luminescent materials with bimodal emissions of both fluorescence and room-temperature phosphorescent (RTP) remains a challenge. The investigation of the relationship between fluorescence and RTP performance is especially rare. In this work, we obtained an organic luminescent molecule, 1,4-phenylenebis((9H-carbazol-9-yl)methanone) (PBCM), which exhibits bimodal emissions of cyan fluorescence and yellow RTP in its crystalline state through adopting an electron donor–acceptor–donor (D–A–D) structure. The charge–transfer (CT) effects in the bimodal luminescent properties of PBCM, as well as the single-crystal structures and thermal properties, were investigated. It was found that the CT effect in the singlet states effectively reduces the ∆E<sub>st</sub> and promotes the ISC processes, resulting in an efficient phosphorescence of PBCM at room temperature. In addition, many strong intermolecular interactions are formed between the donor and acceptor parts of adjacent molecules, leading to the rigid configurations and compact packing of molecules in crystals, which was also confirmed to facilitate the efficient bimodal emissions of PBCM.Chengjian LiChaozheng ZhuoJingwei SunMi OuyangMDPI AGarticlecharge-transferphotoluminescencemolecular interactionsCrystallographyQD901-999ENCrystals, Vol 11, Iss 1370, p 1370 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
charge-transfer photoluminescence molecular interactions Crystallography QD901-999 |
spellingShingle |
charge-transfer photoluminescence molecular interactions Crystallography QD901-999 Chengjian Li Chaozheng Zhuo Jingwei Sun Mi Ouyang Charge–Transfer Fluorescence and Room-Temperature Phosphorescence from a Bisamide-Based Derivative |
description |
The development of organic luminescent materials with bimodal emissions of both fluorescence and room-temperature phosphorescent (RTP) remains a challenge. The investigation of the relationship between fluorescence and RTP performance is especially rare. In this work, we obtained an organic luminescent molecule, 1,4-phenylenebis((9H-carbazol-9-yl)methanone) (PBCM), which exhibits bimodal emissions of cyan fluorescence and yellow RTP in its crystalline state through adopting an electron donor–acceptor–donor (D–A–D) structure. The charge–transfer (CT) effects in the bimodal luminescent properties of PBCM, as well as the single-crystal structures and thermal properties, were investigated. It was found that the CT effect in the singlet states effectively reduces the ∆E<sub>st</sub> and promotes the ISC processes, resulting in an efficient phosphorescence of PBCM at room temperature. In addition, many strong intermolecular interactions are formed between the donor and acceptor parts of adjacent molecules, leading to the rigid configurations and compact packing of molecules in crystals, which was also confirmed to facilitate the efficient bimodal emissions of PBCM. |
format |
article |
author |
Chengjian Li Chaozheng Zhuo Jingwei Sun Mi Ouyang |
author_facet |
Chengjian Li Chaozheng Zhuo Jingwei Sun Mi Ouyang |
author_sort |
Chengjian Li |
title |
Charge–Transfer Fluorescence and Room-Temperature Phosphorescence from a Bisamide-Based Derivative |
title_short |
Charge–Transfer Fluorescence and Room-Temperature Phosphorescence from a Bisamide-Based Derivative |
title_full |
Charge–Transfer Fluorescence and Room-Temperature Phosphorescence from a Bisamide-Based Derivative |
title_fullStr |
Charge–Transfer Fluorescence and Room-Temperature Phosphorescence from a Bisamide-Based Derivative |
title_full_unstemmed |
Charge–Transfer Fluorescence and Room-Temperature Phosphorescence from a Bisamide-Based Derivative |
title_sort |
charge–transfer fluorescence and room-temperature phosphorescence from a bisamide-based derivative |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/5aa5ea4606154dd8b35067f85ba435f3 |
work_keys_str_mv |
AT chengjianli chargetransferfluorescenceandroomtemperaturephosphorescencefromabisamidebasedderivative AT chaozhengzhuo chargetransferfluorescenceandroomtemperaturephosphorescencefromabisamidebasedderivative AT jingweisun chargetransferfluorescenceandroomtemperaturephosphorescencefromabisamidebasedderivative AT miouyang chargetransferfluorescenceandroomtemperaturephosphorescencefromabisamidebasedderivative |
_version_ |
1718412531189415936 |