Avoiding coherent errors with rotated concatenated stabilizer codes

Abstract Coherent errors, which arise from collective couplings, are a dominant form of noise in many realistic quantum systems, and are more damaging than oft considered stochastic errors. Here, we propose integrating stabilizer codes with constant-excitation codes by code concatenation. Namely, by...

Description complète

Enregistré dans:
Détails bibliographiques
Auteur principal: Yingkai Ouyang
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Accès en ligne:https://doaj.org/article/5abcf30f11aa47f197c621704e733a2f
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Abstract Coherent errors, which arise from collective couplings, are a dominant form of noise in many realistic quantum systems, and are more damaging than oft considered stochastic errors. Here, we propose integrating stabilizer codes with constant-excitation codes by code concatenation. Namely, by concatenating an [[n, k, d]] stabilizer outer code with dual-rail inner codes, we obtain a [[2n, k, d]] constant-excitation code immune from coherent phase errors and also equivalent to a Pauli-rotated stabilizer code. When the stabilizer outer code is fault-tolerant, the constant-excitation code has a positive fault-tolerant threshold against stochastic errors. Setting the outer code as a four-qubit amplitude damping code yields an eight-qubit constant-excitation code that corrects a single amplitude damping error, and we analyze this code’s potential as a quantum memory.