MultiCapsNet: A General Framework for Data Integration and Interpretable Classification
The latest progresses of experimental biology have generated a large number of data with different formats and lengths. Deep learning is an ideal tool to deal with complex datasets, but its inherent “black box” nature needs more interpretability. At the same time, traditional interpretable machine l...
Guardado en:
Autores principales: | Lifei Wang, Xuexia Miao, Rui Nie, Zhang Zhang, Jiang Zhang, Jun Cai |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5accd7e0eded434394e3092cb1cfcb17 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
CapPlant: a capsule network based framework for plant disease classification
por: Omar Bin Samin, et al.
Publicado: (2021) -
EnCaps: Clothing Image Classification Based on Enhanced Capsule Network
por: Feng Yu, et al.
Publicado: (2021) -
Redundancy Is Not Necessarily Detrimental in Classification Problems
por: Sebastián Alberto Grillo, et al.
Publicado: (2021) -
TSInsight: A Local-Global Attribution Framework for Interpretability in Time Series Data
por: Shoaib Ahmed Siddiqui, et al.
Publicado: (2021) -
Task-Adaptive Embedding Learning with Dynamic Kernel Fusion for Few-Shot Remote Sensing Scene Classification
por: Pei Zhang, et al.
Publicado: (2021)