Examining the competing effects of contemporary land management vs. land cover changes on global air quality

<p>Our work explores the impact of two important dimensions of land system changes, land use and land cover change (LULCC) as well as direct agricultural reactive nitrogen (N<span class="inline-formula"><sub>r</sub></span>) emissions from soils, on ozone (O<...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: A. Y. H. Wong, J. A. Geddes
Formato: article
Lenguaje:EN
Publicado: Copernicus Publications 2021
Materias:
Acceso en línea:https://doaj.org/article/5ad03cf13cf4444b99c18de935883df0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5ad03cf13cf4444b99c18de935883df0
record_format dspace
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
Chemistry
QD1-999
spellingShingle Physics
QC1-999
Chemistry
QD1-999
A. Y. H. Wong
J. A. Geddes
Examining the competing effects of contemporary land management vs. land cover changes on global air quality
description <p>Our work explores the impact of two important dimensions of land system changes, land use and land cover change (LULCC) as well as direct agricultural reactive nitrogen (N<span class="inline-formula"><sub>r</sub></span>) emissions from soils, on ozone (O<span class="inline-formula"><sub>3</sub></span>) and fine particulate matter (PM<span class="inline-formula"><sub>2.5</sub>)</span> in terms of air quality over contemporary (1992 to 2014) timescales. We account for LULCC and agricultural N<span class="inline-formula"><sub>r</sub></span> emissions changes with consistent remote sensing products and new global emission inventories respectively estimating their impacts on global surface O<span class="inline-formula"><sub>3</sub></span> and PM<span class="inline-formula"><sub>2.5</sub></span> concentrations as well as N<span class="inline-formula"><sub>r</sub></span> deposition using the GEOS-Chem global chemical transport model. Over this time period, our model results show that agricultural N<span class="inline-formula"><sub>r</sub></span> emission changes cause a reduction of annual mean PM<span class="inline-formula"><sub>2.5</sub></span> levels over Europe and northern Asia (up to <span class="inline-formula">−</span>2.1 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>) while increasing PM<span class="inline-formula"><sub>2.5</sub></span> levels in India, China and the eastern US (up to <span class="inline-formula">+</span>3.5 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>). Land cover changes induce small reductions in PM<span class="inline-formula"><sub>2.5</sub></span> (up to <span class="inline-formula">−</span>0.7 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>) over Amazonia, China and India due to reduced biogenic volatile organic compound (BVOC) emissions and enhanced deposition of aerosol precursor gases (e.g., NO<span class="inline-formula"><sub>2</sub></span>, SO<span class="inline-formula"><sub>2</sub></span>). Agricultural N<span class="inline-formula"><sub>r</sub></span> emission changes only lead to minor changes (up to <span class="inline-formula">±0.6</span> ppbv) in annual mean surface O<span class="inline-formula"><sub>3</sub></span> levels, mainly over China, India and Myanmar. Meanwhile, our model result suggests a stronger impact of LULCC on surface O<span class="inline-formula"><sub>3</sub></span> over the time period across South America; the combination of changes in dry deposition and isoprene emissions results in <span class="inline-formula">−</span>0.8 to <span class="inline-formula">+</span>1.2 ppbv surface ozone changes. The enhancement of dry deposition reduces the surface ozone level (up to <span class="inline-formula">−</span>1 ppbv) over southern China, the eastern US and central Africa. The enhancement of soil NO emission due to crop expansion also contributes to surface ozone changes (up to <span class="inline-formula">+</span>0.6 ppbv) over sub-Saharan Africa. In certain regions, the combined effects of LULCC and agricultural N<span class="inline-formula"><sub>r</sub></span> emission changes on O<span class="inline-formula"><sub>3</sub></span> and PM<span class="inline-formula"><sub>2.5</sub></span> air quality can be comparable (<span class="inline-formula"><i>&gt;</i>20</span> %) to anthropogenic emission changes over the same time period. Finally, we calculate that the increase in global agricultural N<span class="inline-formula"><sub>r</sub></span> emissions leads to a net increase in global land area (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M36" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>+</mo><mn mathvariant="normal">3.67</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">6</mn></msup><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">km</mi><mn mathvariant="normal">2</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="80pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="09bdf3dd009e61d7f0320d163dde59c0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-16479-2021-ie00001.svg" width="80pt" height="14pt" src="acp-21-16479-2021-ie00001.png"/></svg:svg></span></span>) that potentially faces exceedance of the critical N<span class="inline-formula"><sub>r</sub></span> load (<span class="inline-formula"><i>&gt;</i>5</span> kg N ha<span class="inline-formula"><sup>−1</sup></span> yr<span class="inline-formula"><sup>−1</sup></span>). Our result demonstrates the impacts of contemporary LULCC and agricultural N<span class="inline-formula"><sub>r</sub></span> emission changes on PM<span class="inline-formula"><sub>2.5</sub></span> and O<span class="inline-formula"><sub>3</sub></span> in terms of air quality, as well as the importance of land system changes for air quality over multidecadal timescales.</p>
format article
author A. Y. H. Wong
J. A. Geddes
author_facet A. Y. H. Wong
J. A. Geddes
author_sort A. Y. H. Wong
title Examining the competing effects of contemporary land management vs. land cover changes on global air quality
title_short Examining the competing effects of contemporary land management vs. land cover changes on global air quality
title_full Examining the competing effects of contemporary land management vs. land cover changes on global air quality
title_fullStr Examining the competing effects of contemporary land management vs. land cover changes on global air quality
title_full_unstemmed Examining the competing effects of contemporary land management vs. land cover changes on global air quality
title_sort examining the competing effects of contemporary land management vs. land cover changes on global air quality
publisher Copernicus Publications
publishDate 2021
url https://doaj.org/article/5ad03cf13cf4444b99c18de935883df0
work_keys_str_mv AT ayhwong examiningthecompetingeffectsofcontemporarylandmanagementvslandcoverchangesonglobalairquality
AT jageddes examiningthecompetingeffectsofcontemporarylandmanagementvslandcoverchangesonglobalairquality
_version_ 1718439217686642688
spelling oai:doaj.org-article:5ad03cf13cf4444b99c18de935883df02021-11-11T10:20:17ZExamining the competing effects of contemporary land management vs. land cover changes on global air quality10.5194/acp-21-16479-20211680-73161680-7324https://doaj.org/article/5ad03cf13cf4444b99c18de935883df02021-11-01T00:00:00Zhttps://acp.copernicus.org/articles/21/16479/2021/acp-21-16479-2021.pdfhttps://doaj.org/toc/1680-7316https://doaj.org/toc/1680-7324<p>Our work explores the impact of two important dimensions of land system changes, land use and land cover change (LULCC) as well as direct agricultural reactive nitrogen (N<span class="inline-formula"><sub>r</sub></span>) emissions from soils, on ozone (O<span class="inline-formula"><sub>3</sub></span>) and fine particulate matter (PM<span class="inline-formula"><sub>2.5</sub>)</span> in terms of air quality over contemporary (1992 to 2014) timescales. We account for LULCC and agricultural N<span class="inline-formula"><sub>r</sub></span> emissions changes with consistent remote sensing products and new global emission inventories respectively estimating their impacts on global surface O<span class="inline-formula"><sub>3</sub></span> and PM<span class="inline-formula"><sub>2.5</sub></span> concentrations as well as N<span class="inline-formula"><sub>r</sub></span> deposition using the GEOS-Chem global chemical transport model. Over this time period, our model results show that agricultural N<span class="inline-formula"><sub>r</sub></span> emission changes cause a reduction of annual mean PM<span class="inline-formula"><sub>2.5</sub></span> levels over Europe and northern Asia (up to <span class="inline-formula">−</span>2.1 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>) while increasing PM<span class="inline-formula"><sub>2.5</sub></span> levels in India, China and the eastern US (up to <span class="inline-formula">+</span>3.5 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>). Land cover changes induce small reductions in PM<span class="inline-formula"><sub>2.5</sub></span> (up to <span class="inline-formula">−</span>0.7 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>) over Amazonia, China and India due to reduced biogenic volatile organic compound (BVOC) emissions and enhanced deposition of aerosol precursor gases (e.g., NO<span class="inline-formula"><sub>2</sub></span>, SO<span class="inline-formula"><sub>2</sub></span>). Agricultural N<span class="inline-formula"><sub>r</sub></span> emission changes only lead to minor changes (up to <span class="inline-formula">±0.6</span> ppbv) in annual mean surface O<span class="inline-formula"><sub>3</sub></span> levels, mainly over China, India and Myanmar. Meanwhile, our model result suggests a stronger impact of LULCC on surface O<span class="inline-formula"><sub>3</sub></span> over the time period across South America; the combination of changes in dry deposition and isoprene emissions results in <span class="inline-formula">−</span>0.8 to <span class="inline-formula">+</span>1.2 ppbv surface ozone changes. The enhancement of dry deposition reduces the surface ozone level (up to <span class="inline-formula">−</span>1 ppbv) over southern China, the eastern US and central Africa. The enhancement of soil NO emission due to crop expansion also contributes to surface ozone changes (up to <span class="inline-formula">+</span>0.6 ppbv) over sub-Saharan Africa. In certain regions, the combined effects of LULCC and agricultural N<span class="inline-formula"><sub>r</sub></span> emission changes on O<span class="inline-formula"><sub>3</sub></span> and PM<span class="inline-formula"><sub>2.5</sub></span> air quality can be comparable (<span class="inline-formula"><i>&gt;</i>20</span> %) to anthropogenic emission changes over the same time period. Finally, we calculate that the increase in global agricultural N<span class="inline-formula"><sub>r</sub></span> emissions leads to a net increase in global land area (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M36" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>+</mo><mn mathvariant="normal">3.67</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">6</mn></msup><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">km</mi><mn mathvariant="normal">2</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="80pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="09bdf3dd009e61d7f0320d163dde59c0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-16479-2021-ie00001.svg" width="80pt" height="14pt" src="acp-21-16479-2021-ie00001.png"/></svg:svg></span></span>) that potentially faces exceedance of the critical N<span class="inline-formula"><sub>r</sub></span> load (<span class="inline-formula"><i>&gt;</i>5</span> kg N ha<span class="inline-formula"><sup>−1</sup></span> yr<span class="inline-formula"><sup>−1</sup></span>). Our result demonstrates the impacts of contemporary LULCC and agricultural N<span class="inline-formula"><sub>r</sub></span> emission changes on PM<span class="inline-formula"><sub>2.5</sub></span> and O<span class="inline-formula"><sub>3</sub></span> in terms of air quality, as well as the importance of land system changes for air quality over multidecadal timescales.</p>A. Y. H. WongJ. A. GeddesCopernicus PublicationsarticlePhysicsQC1-999ChemistryQD1-999ENAtmospheric Chemistry and Physics, Vol 21, Pp 16479-16497 (2021)