Short communication: Evaluation of charged membrane filters and buffers for concentration and recovery of infectious salmon anaemia virus in seawater.
Infectious salmon anaemia virus (ISAV) is the cause of an important waterborne disease of farmed Atlantic salmon. Detection of virus in water samples may constitute an alternative method to sacrificing fish for surveillance of fish populations for the presence of ISA-virus. We aimed to evaluate diff...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5aea3e9baf3e483f98dd9a65c3085f81 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5aea3e9baf3e483f98dd9a65c3085f81 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5aea3e9baf3e483f98dd9a65c3085f812021-12-02T20:10:32ZShort communication: Evaluation of charged membrane filters and buffers for concentration and recovery of infectious salmon anaemia virus in seawater.1932-620310.1371/journal.pone.0253297https://doaj.org/article/5aea3e9baf3e483f98dd9a65c3085f812021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0253297https://doaj.org/toc/1932-6203Infectious salmon anaemia virus (ISAV) is the cause of an important waterborne disease of farmed Atlantic salmon. Detection of virus in water samples may constitute an alternative method to sacrificing fish for surveillance of fish populations for the presence of ISA-virus. We aimed to evaluate different membrane filters and buffers for concentration and recovery of ISAV in seawater, prior to molecular detection. One litre each of artificial and natural seawater was spiked with ISAV, followed by concentration with different filters and subsequent elution with different buffers. The negatively charged MF hydrophilic membrane filter, combined with NucliSENS® lysis buffer, presented the highest ISAV recovery percentages with 12.5 ± 1.3% by RT-qPCR and 31.7 ± 10.7% by RT-ddPCR. For the positively charged 1 MDS Zeta Plus® Virosorb® membrane filter, combined with NucliSENS® lysis buffer, the ISAV recovery percentages were 3.4 ± 0.1% by RT-qPCR and 10.8 ± 14.2% by RT-ddPCR. The limits of quantification (LOQ) were estimated to be 2.2 x 103 ISAV copies/L of natural seawater for both RT-qPCR and RT-ddPCR. The ISAV concentration method was more efficient in natural seawater.Simon Chioma WeliHaitham TartorBjørn SpilsbergOle Bendik DaleAtle LillehaugPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 6, p e0253297 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Simon Chioma Weli Haitham Tartor Bjørn Spilsberg Ole Bendik Dale Atle Lillehaug Short communication: Evaluation of charged membrane filters and buffers for concentration and recovery of infectious salmon anaemia virus in seawater. |
description |
Infectious salmon anaemia virus (ISAV) is the cause of an important waterborne disease of farmed Atlantic salmon. Detection of virus in water samples may constitute an alternative method to sacrificing fish for surveillance of fish populations for the presence of ISA-virus. We aimed to evaluate different membrane filters and buffers for concentration and recovery of ISAV in seawater, prior to molecular detection. One litre each of artificial and natural seawater was spiked with ISAV, followed by concentration with different filters and subsequent elution with different buffers. The negatively charged MF hydrophilic membrane filter, combined with NucliSENS® lysis buffer, presented the highest ISAV recovery percentages with 12.5 ± 1.3% by RT-qPCR and 31.7 ± 10.7% by RT-ddPCR. For the positively charged 1 MDS Zeta Plus® Virosorb® membrane filter, combined with NucliSENS® lysis buffer, the ISAV recovery percentages were 3.4 ± 0.1% by RT-qPCR and 10.8 ± 14.2% by RT-ddPCR. The limits of quantification (LOQ) were estimated to be 2.2 x 103 ISAV copies/L of natural seawater for both RT-qPCR and RT-ddPCR. The ISAV concentration method was more efficient in natural seawater. |
format |
article |
author |
Simon Chioma Weli Haitham Tartor Bjørn Spilsberg Ole Bendik Dale Atle Lillehaug |
author_facet |
Simon Chioma Weli Haitham Tartor Bjørn Spilsberg Ole Bendik Dale Atle Lillehaug |
author_sort |
Simon Chioma Weli |
title |
Short communication: Evaluation of charged membrane filters and buffers for concentration and recovery of infectious salmon anaemia virus in seawater. |
title_short |
Short communication: Evaluation of charged membrane filters and buffers for concentration and recovery of infectious salmon anaemia virus in seawater. |
title_full |
Short communication: Evaluation of charged membrane filters and buffers for concentration and recovery of infectious salmon anaemia virus in seawater. |
title_fullStr |
Short communication: Evaluation of charged membrane filters and buffers for concentration and recovery of infectious salmon anaemia virus in seawater. |
title_full_unstemmed |
Short communication: Evaluation of charged membrane filters and buffers for concentration and recovery of infectious salmon anaemia virus in seawater. |
title_sort |
short communication: evaluation of charged membrane filters and buffers for concentration and recovery of infectious salmon anaemia virus in seawater. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/5aea3e9baf3e483f98dd9a65c3085f81 |
work_keys_str_mv |
AT simonchiomaweli shortcommunicationevaluationofchargedmembranefiltersandbuffersforconcentrationandrecoveryofinfectioussalmonanaemiavirusinseawater AT haithamtartor shortcommunicationevaluationofchargedmembranefiltersandbuffersforconcentrationandrecoveryofinfectioussalmonanaemiavirusinseawater AT bjørnspilsberg shortcommunicationevaluationofchargedmembranefiltersandbuffersforconcentrationandrecoveryofinfectioussalmonanaemiavirusinseawater AT olebendikdale shortcommunicationevaluationofchargedmembranefiltersandbuffersforconcentrationandrecoveryofinfectioussalmonanaemiavirusinseawater AT atlelillehaug shortcommunicationevaluationofchargedmembranefiltersandbuffersforconcentrationandrecoveryofinfectioussalmonanaemiavirusinseawater |
_version_ |
1718375001288081408 |