Analysis, Modeling, and Simulation of Thin-Film Cells-Based Photovoltaic Generator Combined with Multilayer Thermoelectric Generator

A new model for a multi-stage thermoelectric generator (TEG) is developed. An electrical and thermal model is built and simulated for different configurations of photovoltaic (PV) stand-alone hybrid systems, combining different stages of a TEG. The approach is evaluated with and without cooling by c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yasir Musa Dakwar, Simon Lineykin, Moshe Sitbon
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
PVG
TEG
Acceso en línea:https://doaj.org/article/5aec38c5f4d142d8bb5d136cf505d145
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:A new model for a multi-stage thermoelectric generator (TEG) is developed. An electrical and thermal model is built and simulated for different configurations of photovoltaic (PV) stand-alone hybrid systems, combining different stages of a TEG. The approach is evaluated with and without cooling by coupling a cold plate to a multi-stage hybrid PVTEG system. The model can be adjusted by sizing and specifying the influence of stage number on the overall produced power. Amorphous silicon thin-film (a-Si) is less affected by rising temperature compared to other technology. Hence, it was chosen for evaluating the lower limit gain in a hybrid system under various ambient temperatures and irradiances. The dynamics of the PVTEG system are presented under different coolant water flow rates. Finally, comparative electrical efficiency in reference to PV stand-alone was found to be <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>99.2</mn><mo>%</mo></mrow></semantics></math></inline-formula> for PVTEG without cooling, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>113.5</mn><mo>%</mo></mrow></semantics></math></inline-formula> for PVTEG, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>117.3</mn><mo>%</mo></mrow></semantics></math></inline-formula> for multi-stage PVTEG, accordingly installing multi-stage PVTEG at Israel in a typical year with an average PV yield of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1750</mn><mo> </mo><mi>kWh</mi><mo>/</mo><mi>kW</mi><mo>/</mo><mrow><mi>year</mi></mrow></mrow></semantics></math></inline-formula> generates an extra <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>24</mn><mrow><mo> </mo><mi>kWh</mi></mrow><mo>/</mo><mi>year</mi></mrow></semantics></math></inline-formula> per module hence avoiding fossil energy and equivalent <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>CO</mi></mrow><mn>2</mn></msub></mrow></semantics></math></inline-formula> emissions.