Effect of ultrafine poly(ε-caprolactone) fibers on calcium phosphate cement: in vitro degradation and in vivo regeneration
Boyuan Yang,1 Yi Zuo,1 Qin Zou,1 Limei Li,1 Jidong Li,1 Yi Man,2 Yubao Li1 1Research Center for Nano Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, People’s Republic of China; 2State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan Uni...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5af5746c6bf7432f9144ed98fb0e6c61 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5af5746c6bf7432f9144ed98fb0e6c61 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5af5746c6bf7432f9144ed98fb0e6c612021-12-02T01:32:10ZEffect of ultrafine poly(ε-caprolactone) fibers on calcium phosphate cement: in vitro degradation and in vivo regeneration1178-2013https://doaj.org/article/5af5746c6bf7432f9144ed98fb0e6c612016-01-01T00:00:00Zhttps://www.dovepress.com/effect-of-ultrafine-polyepsilon-caprolactone-fibers-on-calcium-phospha-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Boyuan Yang,1 Yi Zuo,1 Qin Zou,1 Limei Li,1 Jidong Li,1 Yi Man,2 Yubao Li1 1Research Center for Nano Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, People’s Republic of China; 2State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China Abstract: We incorporated ultrafine polymer fibers into calcium phosphate cement (CPC) to improve the resorption rate of CPC with fiber degradation. Different weight percentages of electrospun poly(ε-caprolactone) fibers (0%, 3%, and 7%, named as ultrafine fiber-incorporated CPC0 [UFICPC0], UFICPC3, and UFICPC7) were included into preset CPC specimens for in vitro immersion in lipase phosphate-buffered solution and long-term in vivo implantation in the femoral condyle of rabbits. The effect of the ultrafine poly(ε-caprolactone) fibers with a diameter ranging from nanometer to micrometer on CPC degradation was evaluated by measuring the pH of the medium, mass loss, porosity, and physiochemical properties. For the in vivo evaluation, histomorphometrical analysis as well as three-dimensional (3D) reconstruction was applied to assess the osteogenic properties of the CPC composite. After in vitro immersion and in vivo implantation, the total porosity and macroporosity as well as the bone formation and ingrowth increased significantly during time in the fiber-incorporated CPC specimens. After 24 weeks of implantation, the degraded space was occupied by newly formed bone, and the UFICPC3 and UFICPC7 composites showed a ~3.5 times higher fraction of bone volume than that of the pristine CPC (UFICPC0). In vitro and in vivo results proved that the introduction of ultrafine degradable fibers within a CPC matrix can be used to improve macroporosity efficiently and enhance CPC degradation and bone ingrowth largely. Keywords: ultrafine fibers, calcium phosphate cement, macroporosity, degraded space, bone ingrowthYang BYZuo YZou QLi LMLi JDMan YLi YBDove Medical PressarticleUltrafine fibersCalcium phosphate cementMacroporosityDegraded spaceBone ingrowthMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2016, Iss Issue 1, Pp 163-177 (2016) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Ultrafine fibers Calcium phosphate cement Macroporosity Degraded space Bone ingrowth Medicine (General) R5-920 |
spellingShingle |
Ultrafine fibers Calcium phosphate cement Macroporosity Degraded space Bone ingrowth Medicine (General) R5-920 Yang BY Zuo Y Zou Q Li LM Li JD Man Y Li YB Effect of ultrafine poly(ε-caprolactone) fibers on calcium phosphate cement: in vitro degradation and in vivo regeneration |
description |
Boyuan Yang,1 Yi Zuo,1 Qin Zou,1 Limei Li,1 Jidong Li,1 Yi Man,2 Yubao Li1 1Research Center for Nano Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, People’s Republic of China; 2State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China Abstract: We incorporated ultrafine polymer fibers into calcium phosphate cement (CPC) to improve the resorption rate of CPC with fiber degradation. Different weight percentages of electrospun poly(ε-caprolactone) fibers (0%, 3%, and 7%, named as ultrafine fiber-incorporated CPC0 [UFICPC0], UFICPC3, and UFICPC7) were included into preset CPC specimens for in vitro immersion in lipase phosphate-buffered solution and long-term in vivo implantation in the femoral condyle of rabbits. The effect of the ultrafine poly(ε-caprolactone) fibers with a diameter ranging from nanometer to micrometer on CPC degradation was evaluated by measuring the pH of the medium, mass loss, porosity, and physiochemical properties. For the in vivo evaluation, histomorphometrical analysis as well as three-dimensional (3D) reconstruction was applied to assess the osteogenic properties of the CPC composite. After in vitro immersion and in vivo implantation, the total porosity and macroporosity as well as the bone formation and ingrowth increased significantly during time in the fiber-incorporated CPC specimens. After 24 weeks of implantation, the degraded space was occupied by newly formed bone, and the UFICPC3 and UFICPC7 composites showed a ~3.5 times higher fraction of bone volume than that of the pristine CPC (UFICPC0). In vitro and in vivo results proved that the introduction of ultrafine degradable fibers within a CPC matrix can be used to improve macroporosity efficiently and enhance CPC degradation and bone ingrowth largely. Keywords: ultrafine fibers, calcium phosphate cement, macroporosity, degraded space, bone ingrowth |
format |
article |
author |
Yang BY Zuo Y Zou Q Li LM Li JD Man Y Li YB |
author_facet |
Yang BY Zuo Y Zou Q Li LM Li JD Man Y Li YB |
author_sort |
Yang BY |
title |
Effect of ultrafine poly(ε-caprolactone) fibers on calcium phosphate cement: in vitro degradation and in vivo regeneration |
title_short |
Effect of ultrafine poly(ε-caprolactone) fibers on calcium phosphate cement: in vitro degradation and in vivo regeneration |
title_full |
Effect of ultrafine poly(ε-caprolactone) fibers on calcium phosphate cement: in vitro degradation and in vivo regeneration |
title_fullStr |
Effect of ultrafine poly(ε-caprolactone) fibers on calcium phosphate cement: in vitro degradation and in vivo regeneration |
title_full_unstemmed |
Effect of ultrafine poly(ε-caprolactone) fibers on calcium phosphate cement: in vitro degradation and in vivo regeneration |
title_sort |
effect of ultrafine poly(ε-caprolactone) fibers on calcium phosphate cement: in vitro degradation and in vivo regeneration |
publisher |
Dove Medical Press |
publishDate |
2016 |
url |
https://doaj.org/article/5af5746c6bf7432f9144ed98fb0e6c61 |
work_keys_str_mv |
AT yangby effectofultrafinepolyepsiloncaprolactonefibersoncalciumphosphatecementinvitrodegradationandinvivoregeneration AT zuoy effectofultrafinepolyepsiloncaprolactonefibersoncalciumphosphatecementinvitrodegradationandinvivoregeneration AT zouq effectofultrafinepolyepsiloncaprolactonefibersoncalciumphosphatecementinvitrodegradationandinvivoregeneration AT lilm effectofultrafinepolyepsiloncaprolactonefibersoncalciumphosphatecementinvitrodegradationandinvivoregeneration AT lijd effectofultrafinepolyepsiloncaprolactonefibersoncalciumphosphatecementinvitrodegradationandinvivoregeneration AT many effectofultrafinepolyepsiloncaprolactonefibersoncalciumphosphatecementinvitrodegradationandinvivoregeneration AT liyb effectofultrafinepolyepsiloncaprolactonefibersoncalciumphosphatecementinvitrodegradationandinvivoregeneration |
_version_ |
1718403016683421696 |