Successful intergeneric transfer of a major apple scab resistance gene (Rvi6) from apple to pear and precise comparison of the downstream molecular mechanisms of this resistance in both species

Abstract Background Scab is the most important fungal disease of apple and pear. Apple (Malus x domestica Borkh.) and European pear (Pyrus communis L.) are genetically related but they are hosts of two different fungal species: Venturia inaequalis for apple and V. pyrina for European pear. The apple...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: L. Perchepied, E. Chevreau, E. Ravon, S. Gaillard, S. Pelletier, M. Bahut, P. Berthelot, R. Cournol, H. J. Schouten, E. Vergne
Formato: article
Lenguaje:EN
Publicado: BMC 2021
Materias:
Acceso en línea:https://doaj.org/article/5afd44646dcf44919df9b2cf0d5d631b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5afd44646dcf44919df9b2cf0d5d631b
record_format dspace
spelling oai:doaj.org-article:5afd44646dcf44919df9b2cf0d5d631b2021-11-28T12:23:15ZSuccessful intergeneric transfer of a major apple scab resistance gene (Rvi6) from apple to pear and precise comparison of the downstream molecular mechanisms of this resistance in both species10.1186/s12864-021-08157-11471-2164https://doaj.org/article/5afd44646dcf44919df9b2cf0d5d631b2021-11-01T00:00:00Zhttps://doi.org/10.1186/s12864-021-08157-1https://doaj.org/toc/1471-2164Abstract Background Scab is the most important fungal disease of apple and pear. Apple (Malus x domestica Borkh.) and European pear (Pyrus communis L.) are genetically related but they are hosts of two different fungal species: Venturia inaequalis for apple and V. pyrina for European pear. The apple/V. inaequalis pathosystem is quite well known, whereas knowledge about the pear/V. pyrina pathosystem is still limited. The aim of our study was to analyse the mode of action of a major resistance gene of apple (Rvi6) in transgenic apple and pear plants interacting with the two scab species (V. inaequalis and V. pyrina), in order to determine the degree of functional transferability between the two pathosystems. Results Transgenic pear clones constitutively expressing the Rvi6 gene from apple were compared to a scab transgenic apple clone carrying the same construct. After inoculation in greenhouse with V. pyrina, strong defense reactions and very limited sporulation were observed on all transgenic pear clones tested. Microscopic observations revealed frequent aborted conidiophores in the Rvi6 transgenic pear / V. pyrina interaction. The macro- and microscopic observations were very comparable to the Rvi6 apple / V. inaequalis interaction. However, this resistance in pear proved variable according to the strain of V. pyrina, and one of the strains tested overcame the resistance of most of the transgenic pear clones. Comparative transcriptomic analyses of apple and pear resistant interactions with V. inaequalis and V. pyrina, respectively, revealed different cascades of molecular mechanisms downstream of the pathogen recognition by Rvi6 in the two species. Signal transduction was triggered in both species with calcium (and G-proteins in pear) and interconnected hormonal signaling (jasmonic acid in pear, auxins in apple and brassinosteroids in both species), without involvement of salicylic acid. This led to the induction of defense responses such as a remodeling of primary and secondary cell wall, lipids biosynthesis (galactolipids in apple and cutin and cuticular waxes in pear), systemic acquired resistance signal generation (in apple) or perception in distal tissues (in pear), and the biosynthesis of phenylpropanoids (flavonoids in apple but also lignin in pear). Conclusion This study is the first example of a successful intergeneric transfer of a resistance gene among Rosaceae, with a resistance gene functioning towards another species of pathogen.L. PerchepiedE. ChevreauE. RavonS. GaillardS. PelletierM. BahutP. BerthelotR. CournolH. J. SchoutenE. VergneBMCarticleAppleIntergenericPearRvi6ScabTranscriptomicsBiotechnologyTP248.13-248.65GeneticsQH426-470ENBMC Genomics, Vol 22, Iss 1, Pp 1-18 (2021)
institution DOAJ
collection DOAJ
language EN
topic Apple
Intergeneric
Pear
Rvi6
Scab
Transcriptomics
Biotechnology
TP248.13-248.65
Genetics
QH426-470
spellingShingle Apple
Intergeneric
Pear
Rvi6
Scab
Transcriptomics
Biotechnology
TP248.13-248.65
Genetics
QH426-470
L. Perchepied
E. Chevreau
E. Ravon
S. Gaillard
S. Pelletier
M. Bahut
P. Berthelot
R. Cournol
H. J. Schouten
E. Vergne
Successful intergeneric transfer of a major apple scab resistance gene (Rvi6) from apple to pear and precise comparison of the downstream molecular mechanisms of this resistance in both species
description Abstract Background Scab is the most important fungal disease of apple and pear. Apple (Malus x domestica Borkh.) and European pear (Pyrus communis L.) are genetically related but they are hosts of two different fungal species: Venturia inaequalis for apple and V. pyrina for European pear. The apple/V. inaequalis pathosystem is quite well known, whereas knowledge about the pear/V. pyrina pathosystem is still limited. The aim of our study was to analyse the mode of action of a major resistance gene of apple (Rvi6) in transgenic apple and pear plants interacting with the two scab species (V. inaequalis and V. pyrina), in order to determine the degree of functional transferability between the two pathosystems. Results Transgenic pear clones constitutively expressing the Rvi6 gene from apple were compared to a scab transgenic apple clone carrying the same construct. After inoculation in greenhouse with V. pyrina, strong defense reactions and very limited sporulation were observed on all transgenic pear clones tested. Microscopic observations revealed frequent aborted conidiophores in the Rvi6 transgenic pear / V. pyrina interaction. The macro- and microscopic observations were very comparable to the Rvi6 apple / V. inaequalis interaction. However, this resistance in pear proved variable according to the strain of V. pyrina, and one of the strains tested overcame the resistance of most of the transgenic pear clones. Comparative transcriptomic analyses of apple and pear resistant interactions with V. inaequalis and V. pyrina, respectively, revealed different cascades of molecular mechanisms downstream of the pathogen recognition by Rvi6 in the two species. Signal transduction was triggered in both species with calcium (and G-proteins in pear) and interconnected hormonal signaling (jasmonic acid in pear, auxins in apple and brassinosteroids in both species), without involvement of salicylic acid. This led to the induction of defense responses such as a remodeling of primary and secondary cell wall, lipids biosynthesis (galactolipids in apple and cutin and cuticular waxes in pear), systemic acquired resistance signal generation (in apple) or perception in distal tissues (in pear), and the biosynthesis of phenylpropanoids (flavonoids in apple but also lignin in pear). Conclusion This study is the first example of a successful intergeneric transfer of a resistance gene among Rosaceae, with a resistance gene functioning towards another species of pathogen.
format article
author L. Perchepied
E. Chevreau
E. Ravon
S. Gaillard
S. Pelletier
M. Bahut
P. Berthelot
R. Cournol
H. J. Schouten
E. Vergne
author_facet L. Perchepied
E. Chevreau
E. Ravon
S. Gaillard
S. Pelletier
M. Bahut
P. Berthelot
R. Cournol
H. J. Schouten
E. Vergne
author_sort L. Perchepied
title Successful intergeneric transfer of a major apple scab resistance gene (Rvi6) from apple to pear and precise comparison of the downstream molecular mechanisms of this resistance in both species
title_short Successful intergeneric transfer of a major apple scab resistance gene (Rvi6) from apple to pear and precise comparison of the downstream molecular mechanisms of this resistance in both species
title_full Successful intergeneric transfer of a major apple scab resistance gene (Rvi6) from apple to pear and precise comparison of the downstream molecular mechanisms of this resistance in both species
title_fullStr Successful intergeneric transfer of a major apple scab resistance gene (Rvi6) from apple to pear and precise comparison of the downstream molecular mechanisms of this resistance in both species
title_full_unstemmed Successful intergeneric transfer of a major apple scab resistance gene (Rvi6) from apple to pear and precise comparison of the downstream molecular mechanisms of this resistance in both species
title_sort successful intergeneric transfer of a major apple scab resistance gene (rvi6) from apple to pear and precise comparison of the downstream molecular mechanisms of this resistance in both species
publisher BMC
publishDate 2021
url https://doaj.org/article/5afd44646dcf44919df9b2cf0d5d631b
work_keys_str_mv AT lperchepied successfulintergenerictransferofamajorapplescabresistancegenervi6fromappletopearandprecisecomparisonofthedownstreammolecularmechanismsofthisresistanceinbothspecies
AT echevreau successfulintergenerictransferofamajorapplescabresistancegenervi6fromappletopearandprecisecomparisonofthedownstreammolecularmechanismsofthisresistanceinbothspecies
AT eravon successfulintergenerictransferofamajorapplescabresistancegenervi6fromappletopearandprecisecomparisonofthedownstreammolecularmechanismsofthisresistanceinbothspecies
AT sgaillard successfulintergenerictransferofamajorapplescabresistancegenervi6fromappletopearandprecisecomparisonofthedownstreammolecularmechanismsofthisresistanceinbothspecies
AT spelletier successfulintergenerictransferofamajorapplescabresistancegenervi6fromappletopearandprecisecomparisonofthedownstreammolecularmechanismsofthisresistanceinbothspecies
AT mbahut successfulintergenerictransferofamajorapplescabresistancegenervi6fromappletopearandprecisecomparisonofthedownstreammolecularmechanismsofthisresistanceinbothspecies
AT pberthelot successfulintergenerictransferofamajorapplescabresistancegenervi6fromappletopearandprecisecomparisonofthedownstreammolecularmechanismsofthisresistanceinbothspecies
AT rcournol successfulintergenerictransferofamajorapplescabresistancegenervi6fromappletopearandprecisecomparisonofthedownstreammolecularmechanismsofthisresistanceinbothspecies
AT hjschouten successfulintergenerictransferofamajorapplescabresistancegenervi6fromappletopearandprecisecomparisonofthedownstreammolecularmechanismsofthisresistanceinbothspecies
AT evergne successfulintergenerictransferofamajorapplescabresistancegenervi6fromappletopearandprecisecomparisonofthedownstreammolecularmechanismsofthisresistanceinbothspecies
_version_ 1718408015919448064