Polarization control of THz emission using spin-reorientation transition in spintronic heterostructure
Abstract Polarization of electromagnetic waves plays an extremely important role in interaction of radiation with matter. In particular, interaction of polarized waves with ordered matter strongly depends on orientation and symmetry of vibrations of chemical bonds in crystals. In quantum technologie...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5b43ec0dcaf942b4bacb6fd11885f2b8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5b43ec0dcaf942b4bacb6fd11885f2b8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5b43ec0dcaf942b4bacb6fd11885f2b82021-12-02T14:01:38ZPolarization control of THz emission using spin-reorientation transition in spintronic heterostructure10.1038/s41598-020-80781-52045-2322https://doaj.org/article/5b43ec0dcaf942b4bacb6fd11885f2b82021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-80781-5https://doaj.org/toc/2045-2322Abstract Polarization of electromagnetic waves plays an extremely important role in interaction of radiation with matter. In particular, interaction of polarized waves with ordered matter strongly depends on orientation and symmetry of vibrations of chemical bonds in crystals. In quantum technologies, the polarization of photons is considered as a “degree of freedom”, which is one of the main parameters that ensure efficient quantum computing. However, even for visible light, polarization control is in most cases separated from light emission. In this paper, we report on a new type of polarization control, implemented directly in a spintronic terahertz emitter. The principle of control, realized by a weak magnetic field at room temperature, is based on a spin-reorientation transition (SRT) in an intermetallic heterostructure TbCo2/FeCo with uniaxial in-plane magnetic anisotropy. SRT is implemented under magnetic field of variable strength but of a fixed direction, orthogonal to the easy magnetization axis. Variation of the magnetic field strength in the angular (canted) phase of the SRT causes magnetization rotation without changing its magnitude. The charge current excited by the spin-to-charge conversion is orthogonal to the magnetization. As a result, THz polarization rotates synchronously with magnetization when magnetic field strength changes. Importantly, the radiation intensity does not change in this case. Control of polarization by SRT is applicable regardless of the spintronic mechanism of the THz emission, provided that the polarization direction is determined by the magnetic moment orientation. The results obtained open the prospect for the development of the SRT approach for THz emission control.Dinar KhusyainovSergei OvcharenkoMikhail GaponovArseniy BuryakovAlexey KlimovNicolas TiercelinPhilippe PernodVadim NozdrinElena MishinaAlexander SigovVladimir PreobrazhenskyNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Dinar Khusyainov Sergei Ovcharenko Mikhail Gaponov Arseniy Buryakov Alexey Klimov Nicolas Tiercelin Philippe Pernod Vadim Nozdrin Elena Mishina Alexander Sigov Vladimir Preobrazhensky Polarization control of THz emission using spin-reorientation transition in spintronic heterostructure |
description |
Abstract Polarization of electromagnetic waves plays an extremely important role in interaction of radiation with matter. In particular, interaction of polarized waves with ordered matter strongly depends on orientation and symmetry of vibrations of chemical bonds in crystals. In quantum technologies, the polarization of photons is considered as a “degree of freedom”, which is one of the main parameters that ensure efficient quantum computing. However, even for visible light, polarization control is in most cases separated from light emission. In this paper, we report on a new type of polarization control, implemented directly in a spintronic terahertz emitter. The principle of control, realized by a weak magnetic field at room temperature, is based on a spin-reorientation transition (SRT) in an intermetallic heterostructure TbCo2/FeCo with uniaxial in-plane magnetic anisotropy. SRT is implemented under magnetic field of variable strength but of a fixed direction, orthogonal to the easy magnetization axis. Variation of the magnetic field strength in the angular (canted) phase of the SRT causes magnetization rotation without changing its magnitude. The charge current excited by the spin-to-charge conversion is orthogonal to the magnetization. As a result, THz polarization rotates synchronously with magnetization when magnetic field strength changes. Importantly, the radiation intensity does not change in this case. Control of polarization by SRT is applicable regardless of the spintronic mechanism of the THz emission, provided that the polarization direction is determined by the magnetic moment orientation. The results obtained open the prospect for the development of the SRT approach for THz emission control. |
format |
article |
author |
Dinar Khusyainov Sergei Ovcharenko Mikhail Gaponov Arseniy Buryakov Alexey Klimov Nicolas Tiercelin Philippe Pernod Vadim Nozdrin Elena Mishina Alexander Sigov Vladimir Preobrazhensky |
author_facet |
Dinar Khusyainov Sergei Ovcharenko Mikhail Gaponov Arseniy Buryakov Alexey Klimov Nicolas Tiercelin Philippe Pernod Vadim Nozdrin Elena Mishina Alexander Sigov Vladimir Preobrazhensky |
author_sort |
Dinar Khusyainov |
title |
Polarization control of THz emission using spin-reorientation transition in spintronic heterostructure |
title_short |
Polarization control of THz emission using spin-reorientation transition in spintronic heterostructure |
title_full |
Polarization control of THz emission using spin-reorientation transition in spintronic heterostructure |
title_fullStr |
Polarization control of THz emission using spin-reorientation transition in spintronic heterostructure |
title_full_unstemmed |
Polarization control of THz emission using spin-reorientation transition in spintronic heterostructure |
title_sort |
polarization control of thz emission using spin-reorientation transition in spintronic heterostructure |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/5b43ec0dcaf942b4bacb6fd11885f2b8 |
work_keys_str_mv |
AT dinarkhusyainov polarizationcontrolofthzemissionusingspinreorientationtransitioninspintronicheterostructure AT sergeiovcharenko polarizationcontrolofthzemissionusingspinreorientationtransitioninspintronicheterostructure AT mikhailgaponov polarizationcontrolofthzemissionusingspinreorientationtransitioninspintronicheterostructure AT arseniyburyakov polarizationcontrolofthzemissionusingspinreorientationtransitioninspintronicheterostructure AT alexeyklimov polarizationcontrolofthzemissionusingspinreorientationtransitioninspintronicheterostructure AT nicolastiercelin polarizationcontrolofthzemissionusingspinreorientationtransitioninspintronicheterostructure AT philippepernod polarizationcontrolofthzemissionusingspinreorientationtransitioninspintronicheterostructure AT vadimnozdrin polarizationcontrolofthzemissionusingspinreorientationtransitioninspintronicheterostructure AT elenamishina polarizationcontrolofthzemissionusingspinreorientationtransitioninspintronicheterostructure AT alexandersigov polarizationcontrolofthzemissionusingspinreorientationtransitioninspintronicheterostructure AT vladimirpreobrazhensky polarizationcontrolofthzemissionusingspinreorientationtransitioninspintronicheterostructure |
_version_ |
1718392081202806784 |