Trip Purpose Imputation Using GPS Trajectories with Machine Learning
We studied trip purpose imputation using data mining and machine learning techniques based on a dataset of GPS-based trajectories gathered in Switzerland. With a large number of labeled activities in eight categories, we explored location information using hierarchical clustering and achieved a clas...
Guardado en:
Autores principales: | Qinggang Gao, Joseph Molloy, Kay W. Axhausen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5b45681ef4ff4326aacb528c01cb781d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Evaluating High-Variance Leaves as Uncertainty Measure for Random Forest Regression
por: Thomas-Martin Dutschmann, et al.
Publicado: (2021) -
Integrating Multiple Datasets and Machine Learning Algorithms for Satellite-Based Bathymetry in Seaports
por: Zhongqiang Wu, et al.
Publicado: (2021) -
A tree based approach for multi-class classification of surgical procedures using structured and unstructured data
por: Tannaz Khaleghi, et al.
Publicado: (2021) -
Robust fuzzy factorization machine with noise clustering-based membership function estimation
por: Katsuhiro Honda, et al.
Publicado: (2021) -
An Improved Selective Ensemble Learning Method for Highway Traffic Flow State Identification
por: Zhanzhong Wang, et al.
Publicado: (2020)