Serotonergic chemosensory neurons modify the C. elegans immune response by regulating G-protein signaling in epithelial cells.
The nervous and immune systems influence each other, allowing animals to rapidly protect themselves from changes in their internal and external environment. However, the complex nature of these systems in mammals makes it difficult to determine how neuronal signaling influences the immune response....
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5b5563aa67094fcd8065f123a03d6450 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5b5563aa67094fcd8065f123a03d6450 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5b5563aa67094fcd8065f123a03d64502021-11-18T06:07:15ZSerotonergic chemosensory neurons modify the C. elegans immune response by regulating G-protein signaling in epithelial cells.1553-73661553-737410.1371/journal.ppat.1003787https://doaj.org/article/5b5563aa67094fcd8065f123a03d64502013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24348250/pdf/?tool=EBIhttps://doaj.org/toc/1553-7366https://doaj.org/toc/1553-7374The nervous and immune systems influence each other, allowing animals to rapidly protect themselves from changes in their internal and external environment. However, the complex nature of these systems in mammals makes it difficult to determine how neuronal signaling influences the immune response. Here we show that serotonin, synthesized in Caenorhabditis elegans chemosensory neurons, modulates the immune response. Serotonin released from these cells acts, directly or indirectly, to regulate G-protein signaling in epithelial cells. Signaling in these cells is required for the immune response to infection by the natural pathogen Microbacterium nematophilum. Here we show that serotonin signaling suppresses the innate immune response and limits the rate of pathogen clearance. We show that C. elegans uses classical neurotransmitters to alter the immune response. Serotonin released from sensory neurons may function to modify the immune system in response to changes in the animal's external environment such as the availability, or quality, of food.Alexandra AndersonHenry Laurenson-SchaferFrederick A PartridgeJonathan HodgkinRachel McMullanPublic Library of Science (PLoS)articleImmunologic diseases. AllergyRC581-607Biology (General)QH301-705.5ENPLoS Pathogens, Vol 9, Iss 12, p e1003787 (2013) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Immunologic diseases. Allergy RC581-607 Biology (General) QH301-705.5 |
spellingShingle |
Immunologic diseases. Allergy RC581-607 Biology (General) QH301-705.5 Alexandra Anderson Henry Laurenson-Schafer Frederick A Partridge Jonathan Hodgkin Rachel McMullan Serotonergic chemosensory neurons modify the C. elegans immune response by regulating G-protein signaling in epithelial cells. |
description |
The nervous and immune systems influence each other, allowing animals to rapidly protect themselves from changes in their internal and external environment. However, the complex nature of these systems in mammals makes it difficult to determine how neuronal signaling influences the immune response. Here we show that serotonin, synthesized in Caenorhabditis elegans chemosensory neurons, modulates the immune response. Serotonin released from these cells acts, directly or indirectly, to regulate G-protein signaling in epithelial cells. Signaling in these cells is required for the immune response to infection by the natural pathogen Microbacterium nematophilum. Here we show that serotonin signaling suppresses the innate immune response and limits the rate of pathogen clearance. We show that C. elegans uses classical neurotransmitters to alter the immune response. Serotonin released from sensory neurons may function to modify the immune system in response to changes in the animal's external environment such as the availability, or quality, of food. |
format |
article |
author |
Alexandra Anderson Henry Laurenson-Schafer Frederick A Partridge Jonathan Hodgkin Rachel McMullan |
author_facet |
Alexandra Anderson Henry Laurenson-Schafer Frederick A Partridge Jonathan Hodgkin Rachel McMullan |
author_sort |
Alexandra Anderson |
title |
Serotonergic chemosensory neurons modify the C. elegans immune response by regulating G-protein signaling in epithelial cells. |
title_short |
Serotonergic chemosensory neurons modify the C. elegans immune response by regulating G-protein signaling in epithelial cells. |
title_full |
Serotonergic chemosensory neurons modify the C. elegans immune response by regulating G-protein signaling in epithelial cells. |
title_fullStr |
Serotonergic chemosensory neurons modify the C. elegans immune response by regulating G-protein signaling in epithelial cells. |
title_full_unstemmed |
Serotonergic chemosensory neurons modify the C. elegans immune response by regulating G-protein signaling in epithelial cells. |
title_sort |
serotonergic chemosensory neurons modify the c. elegans immune response by regulating g-protein signaling in epithelial cells. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2013 |
url |
https://doaj.org/article/5b5563aa67094fcd8065f123a03d6450 |
work_keys_str_mv |
AT alexandraanderson serotonergicchemosensoryneuronsmodifythecelegansimmuneresponsebyregulatinggproteinsignalinginepithelialcells AT henrylaurensonschafer serotonergicchemosensoryneuronsmodifythecelegansimmuneresponsebyregulatinggproteinsignalinginepithelialcells AT frederickapartridge serotonergicchemosensoryneuronsmodifythecelegansimmuneresponsebyregulatinggproteinsignalinginepithelialcells AT jonathanhodgkin serotonergicchemosensoryneuronsmodifythecelegansimmuneresponsebyregulatinggproteinsignalinginepithelialcells AT rachelmcmullan serotonergicchemosensoryneuronsmodifythecelegansimmuneresponsebyregulatinggproteinsignalinginepithelialcells |
_version_ |
1718424539687288832 |