Development and Approbation of Methodology Aimed to Define the Reasons for Turbine Unit Capacity Limitation Based on the Specified Mathematical Model of its Condenser

The purpose of this work is to develop and test the methodology of elucidation of the reasons for turbine unit capacity limitations based on a mathematical model of its condenser. This pur-pose is achieved by using a mathematical model of the condenser as part of the developed methodology, taking in...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Shempelev A. G.
Formato: article
Lenguaje:EN
RO
RU
Publicado: Academy of Sciences of Moldova 2021
Materias:
Acceso en línea:https://doaj.org/article/5b61c0e3eb88453aafc952f7bdcc8012
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The purpose of this work is to develop and test the methodology of elucidation of the reasons for turbine unit capacity limitations based on a mathematical model of its condenser. This pur-pose is achieved by using a mathematical model of the condenser as part of the developed methodology, taking into account the separate effects of contamination of the heat exchange surfaces, air suction into the vacuum system and the operating mode of the main ejector. Based on operational data sampling, the value of the limiting pressure in the condenser, excess of which leads to limitation of turbine unit capacity, was determined. It was established that the cause of power limitation is the abnormal operation of the main ejector due to inadmissible high temperature in the intermediate cooler of its first stage. For regimes that were not pressure-limited, using a mathematical model, the degree of tubes contamination, its influence on the condenser pressure and the power generated by the turbine unit, and the influence of actual air suctions on the condenser pressure were determined. The most important result of the study is to determine the possibility and feasibility of using the developed and tested methodology for solv-ing similar problems for any type of turbine unit equipped with a condenser. The significance of the work lies in the fact that the proposed approach expands the possibilities of using mathemat-ical models of this class in terms of solving such problems.