Temporal convolutional networks predict dynamic oxygen uptake response from wearable sensors across exercise intensities
Abstract Oxygen consumption ( $$\dot{\,{{\mbox{V}}}}{{{\mbox{O}}}}_{2}$$ V ̇ O 2 ) provides established clinical and physiological indicators of cardiorespiratory function and exercise capacity. However, $$\dot{\,{{\mbox{V}}}}{{{\mbox{O}}}}_{2}$$ V ̇ O 2 monitoring is largely limited to specialized...
Guardado en:
Autores principales: | Robert Amelard, Eric T. Hedge, Richard L. Hughson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5b7b3752512d45698685dc8c613a2949 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Out-of-clinic measurement of sweat chloride using a wearable sensor during low-intensity exercise
por: Dong-Hoon Choi, et al.
Publicado: (2020) -
Investigating sources of inaccuracy in wearable optical heart rate sensors
por: Brinnae Bent, et al.
Publicado: (2020) -
Harnessing consumer smartphone and wearable sensors for clinical cancer research
por: Carissa A. Low
Publicado: (2020) -
Response To: Investigating sources of inaccuracy in wearable optical heart rate sensors
por: Peter J. Colvonen
Publicado: (2021) -
Reply: Matters Arising ‘Investigating sources of inaccuracy in wearable optical heart rate sensors’
por: Brinnae Bent, et al.
Publicado: (2021)