Stable isotopes reveal diet shift from pre-extinction to reintroduced Przewalski’s horses

Abstract The Przewalski’s horse (Equus ferus przewalskii), the only remaining wild horse within the equid family, is one of only a handful of species worldwide that went extinct in the wild, was saved by captive breeding, and has been successfully returned to the wild. However, concerns remain that...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Petra Kaczensky, Martina Burnik Šturm, Mikhail V. Sablin, Christian C. Voigt, Steve Smith, Oyunsaikhan Ganbaatar, Boglarka Balint, Chris Walzer, Natalia N. Spasskaya
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/5b89780b1e0c4d668bee64cb6a73b740
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The Przewalski’s horse (Equus ferus przewalskii), the only remaining wild horse within the equid family, is one of only a handful of species worldwide that went extinct in the wild, was saved by captive breeding, and has been successfully returned to the wild. However, concerns remain that after multiple generations in captivity the ecology of the Przewalski’s horse and / or the ecological conditions in its former range have changed in a way compromising the species’ long term survival. We analyzed stable isotope chronologies from tail hair of pre-extinction and reintroduced Przewalski’s horses from the Dzungarian Gobi and detected a clear difference in the isotopic dietary composition. The direction of the dietary shift from being a mixed feeder in winter and a grazer in summer in the past, to a year-round grazer nowadays, is best explained by a release from human hunting pressure. A changed, positive societal attitude towards the species allows reintroduced Przewalski’s horses to utilize the scarce, grass-dominated pastures of the Gobi alongside local people and their livestock whereas their historic conspecifics were forced into less productive habitats dominated by browse.