Enhanced Deep Belief Network Based on Ensemble Learning and Tree-Structured of Parzen Estimators: An Optimal Photovoltaic Power Forecasting Method
The random fluctuation and non-uniformity of Photovoltaic (PV) power generation greatly affect the power grids’ stability and operation. This paper addresses the high volatility of PV power by proposing a precise and reliable ensemble learning model for short-term PV power generation fore...
Guardado en:
Autores principales: | Mohamed Massaoudi, Haitham Abu-Rub, Shady S. Refaat, Mohamed Trabelsi, Ines Chihi, Fakhreddine S. Oueslati |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5b9c140af32240588b39dec97d3d223c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hybrid Wavelet Stacking Ensemble Model for Insulators Contamination Forecasting
por: Stefano Frizzo Stefenon, et al.
Publicado: (2021) -
Temperature Effect on Photovoltaic Modules Power Drop
por: Qais Mohammed Aish
Publicado: (2015) -
A Stacking Ensemble Model to Predict Daily Number of Hospital Admissions for Cardiovascular Diseases
por: Zhixu Hu, et al.
Publicado: (2020) -
Exploring the Benefits of Photovoltaic Non-Optimal Orientations in Buildings
por: Esteban Sánchez, et al.
Publicado: (2021) -
Adaptive ensemble models for medium-term forecasting of water inflow when planning electricity generation under climate change
por: Pavel Matrenin, et al.
Publicado: (2022)