Enhanced Deep Belief Network Based on Ensemble Learning and Tree-Structured of Parzen Estimators: An Optimal Photovoltaic Power Forecasting Method
The random fluctuation and non-uniformity of Photovoltaic (PV) power generation greatly affect the power grids’ stability and operation. This paper addresses the high volatility of PV power by proposing a precise and reliable ensemble learning model for short-term PV power generation fore...
Enregistré dans:
Auteurs principaux: | Mohamed Massaoudi, Haitham Abu-Rub, Shady S. Refaat, Mohamed Trabelsi, Ines Chihi, Fakhreddine S. Oueslati |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/5b9c140af32240588b39dec97d3d223c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Hybrid Wavelet Stacking Ensemble Model for Insulators Contamination Forecasting
par: Stefano Frizzo Stefenon, et autres
Publié: (2021) -
Temperature Effect on Photovoltaic Modules Power Drop
par: Qais Mohammed Aish
Publié: (2015) -
A Stacking Ensemble Model to Predict Daily Number of Hospital Admissions for Cardiovascular Diseases
par: Zhixu Hu, et autres
Publié: (2020) -
Exploring the Benefits of Photovoltaic Non-Optimal Orientations in Buildings
par: Esteban Sánchez, et autres
Publié: (2021) -
Adaptive ensemble models for medium-term forecasting of water inflow when planning electricity generation under climate change
par: Pavel Matrenin, et autres
Publié: (2022)