Compositional Changes of the High-Fat Diet-Induced Gut Microbiota upon Consumption of Common Pulses
The gut microbiome is involved in the host’s metabolism, development, and immunity, which translates to measurable impacts on disease risk and overall health. Emerging evidence supports pulses, i.e., grain legumes, as underutilized nutrient-dense, culinarily versatile, and sustainable staple foods t...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5b9d0b7456c74fda80b98463f5ded9bd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5b9d0b7456c74fda80b98463f5ded9bd |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5b9d0b7456c74fda80b98463f5ded9bd2021-11-25T18:35:52ZCompositional Changes of the High-Fat Diet-Induced Gut Microbiota upon Consumption of Common Pulses10.3390/nu131139922072-6643https://doaj.org/article/5b9d0b7456c74fda80b98463f5ded9bd2021-11-01T00:00:00Zhttps://www.mdpi.com/2072-6643/13/11/3992https://doaj.org/toc/2072-6643The gut microbiome is involved in the host’s metabolism, development, and immunity, which translates to measurable impacts on disease risk and overall health. Emerging evidence supports pulses, i.e., grain legumes, as underutilized nutrient-dense, culinarily versatile, and sustainable staple foods that promote health benefits through modulating the gut microbiota. Herein, the effects of pulse consumption on microbial composition in the cecal content of mice were assessed. Male mice were fed an obesogenic diet formulation with or without 35% of the protein component comprised by each of four commonly consumed pulses—lentil (<i>Lens culinaris</i> L.), chickpea (<i>Cicer arietinum</i> L.), common bean (<i>Phaseolus vulgaris</i> L.), or dry pea (<i>Pisum sativum</i> L.). Mice consuming pulses had distinct microbial communities from animals on the pulse-free diet, as evidenced by β-diversity ordinations. At the phylum level, animals consuming pulses showed an increase in Bacteroidetes and decreases in Proteobacteria and Firmicutes. Furthermore, α-diversity was significantly higher in pulse-fed animals. An ecosystem of the common bacteria that were enhanced, suppressed, or unaffected by most of the pulses was identified. These compositional changes are accompanied by shifts in predicted metagenome functions and are concurrent with previously reported anti-obesogenic physiologic outcomes, suggestive of microbiota-associated benefits of pulse consumption.Tymofiy LutsivTiffany L. WeirJohn N. McGinleyElizabeth S. NeilYuren WeiHenry J. ThompsonMDPI AGarticlelentilchickpeadry peacommon beanpulseshigh-fat dietNutrition. Foods and food supplyTX341-641ENNutrients, Vol 13, Iss 3992, p 3992 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
lentil chickpea dry pea common bean pulses high-fat diet Nutrition. Foods and food supply TX341-641 |
spellingShingle |
lentil chickpea dry pea common bean pulses high-fat diet Nutrition. Foods and food supply TX341-641 Tymofiy Lutsiv Tiffany L. Weir John N. McGinley Elizabeth S. Neil Yuren Wei Henry J. Thompson Compositional Changes of the High-Fat Diet-Induced Gut Microbiota upon Consumption of Common Pulses |
description |
The gut microbiome is involved in the host’s metabolism, development, and immunity, which translates to measurable impacts on disease risk and overall health. Emerging evidence supports pulses, i.e., grain legumes, as underutilized nutrient-dense, culinarily versatile, and sustainable staple foods that promote health benefits through modulating the gut microbiota. Herein, the effects of pulse consumption on microbial composition in the cecal content of mice were assessed. Male mice were fed an obesogenic diet formulation with or without 35% of the protein component comprised by each of four commonly consumed pulses—lentil (<i>Lens culinaris</i> L.), chickpea (<i>Cicer arietinum</i> L.), common bean (<i>Phaseolus vulgaris</i> L.), or dry pea (<i>Pisum sativum</i> L.). Mice consuming pulses had distinct microbial communities from animals on the pulse-free diet, as evidenced by β-diversity ordinations. At the phylum level, animals consuming pulses showed an increase in Bacteroidetes and decreases in Proteobacteria and Firmicutes. Furthermore, α-diversity was significantly higher in pulse-fed animals. An ecosystem of the common bacteria that were enhanced, suppressed, or unaffected by most of the pulses was identified. These compositional changes are accompanied by shifts in predicted metagenome functions and are concurrent with previously reported anti-obesogenic physiologic outcomes, suggestive of microbiota-associated benefits of pulse consumption. |
format |
article |
author |
Tymofiy Lutsiv Tiffany L. Weir John N. McGinley Elizabeth S. Neil Yuren Wei Henry J. Thompson |
author_facet |
Tymofiy Lutsiv Tiffany L. Weir John N. McGinley Elizabeth S. Neil Yuren Wei Henry J. Thompson |
author_sort |
Tymofiy Lutsiv |
title |
Compositional Changes of the High-Fat Diet-Induced Gut Microbiota upon Consumption of Common Pulses |
title_short |
Compositional Changes of the High-Fat Diet-Induced Gut Microbiota upon Consumption of Common Pulses |
title_full |
Compositional Changes of the High-Fat Diet-Induced Gut Microbiota upon Consumption of Common Pulses |
title_fullStr |
Compositional Changes of the High-Fat Diet-Induced Gut Microbiota upon Consumption of Common Pulses |
title_full_unstemmed |
Compositional Changes of the High-Fat Diet-Induced Gut Microbiota upon Consumption of Common Pulses |
title_sort |
compositional changes of the high-fat diet-induced gut microbiota upon consumption of common pulses |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/5b9d0b7456c74fda80b98463f5ded9bd |
work_keys_str_mv |
AT tymofiylutsiv compositionalchangesofthehighfatdietinducedgutmicrobiotauponconsumptionofcommonpulses AT tiffanylweir compositionalchangesofthehighfatdietinducedgutmicrobiotauponconsumptionofcommonpulses AT johnnmcginley compositionalchangesofthehighfatdietinducedgutmicrobiotauponconsumptionofcommonpulses AT elizabethsneil compositionalchangesofthehighfatdietinducedgutmicrobiotauponconsumptionofcommonpulses AT yurenwei compositionalchangesofthehighfatdietinducedgutmicrobiotauponconsumptionofcommonpulses AT henryjthompson compositionalchangesofthehighfatdietinducedgutmicrobiotauponconsumptionofcommonpulses |
_version_ |
1718410955123064832 |