Machine learning for cluster analysis of localization microscopy data
The characterization of clusters in single-molecule microscopy data is vital to reconstruct emerging spatial patterns. Here, the authors present a fast and accurate machine-learning approach to clustering, to address the issues related to the size of the data and to sample heterogeneity.
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | article |
Language: | EN |
Published: |
Nature Portfolio
2020
|
Subjects: | |
Online Access: | https://doaj.org/article/5bc574d8c2a043d098ecae44cf7959d5 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The characterization of clusters in single-molecule microscopy data is vital to reconstruct emerging spatial patterns. Here, the authors present a fast and accurate machine-learning approach to clustering, to address the issues related to the size of the data and to sample heterogeneity. |
---|