Machine learning for cluster analysis of localization microscopy data

The characterization of clusters in single-molecule microscopy data is vital to reconstruct emerging spatial patterns. Here, the authors present a fast and accurate machine-learning approach to clustering, to address the issues related to the size of the data and to sample heterogeneity.

Guardado en:
Detalles Bibliográficos
Autores principales: David J. Williamson, Garth L. Burn, Sabrina Simoncelli, Juliette Griffié, Ruby Peters, Daniel M. Davis, Dylan M. Owen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/5bc574d8c2a043d098ecae44cf7959d5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The characterization of clusters in single-molecule microscopy data is vital to reconstruct emerging spatial patterns. Here, the authors present a fast and accurate machine-learning approach to clustering, to address the issues related to the size of the data and to sample heterogeneity.